Pediatric cardiac arrest is a common and devastating condition which remains poorly understood. Mortality rates are extremely high and brain injury is the most common cause of death. The majority of research regarding cardiac arrest over the past 50 years has focused on improving rates of return of spontaneous circulation (ROSC), with significant progress leading to increased survival rates. However, without interventions to minimize organ injury, there is an increase in long-term health issues associated with our improved resuscitation practices. This has been termed the post-cardiac arrest syndrome, consisting predominantly of long-term neurological deficits. Indeed, several interventions that have been useful in improving ROSC, have not shown benefit in improving long term outcome. There have been numerous pre- clinical translational studies of cardiac arrest in adult animals demonstrating various pharmacological interventions to improve neuronal survival following global cerebral ischemia. However, to date, there are very few studies in pediatric cardiac arrest, as models are scarce. In the current proposal, we describe the first pediatric cardiac arrest model utilizing mice to study the effects of cardiac arrest on neuronal survival and test new therapies. Epidemiologic studies in adults have suggested that females have better outcomes after CA when compared to males. Numerous experimental studies in adult animal models have recapitulated this clinical data, showing that female animals exhibit significantly less brain injury following cerebral ischemia than males. The sex difference observed in experimental adult animals can be nearly completely explained by the high levels of estrogen in female animals, as removal of endogenous sex steroids (ovariectomy) increases female brain injury to male levels and estrogen replacement returns female injury to intact animal levels. Not surprisingly, we did not observe a gender difference in ischemic injury in pediatric mice, consistent with pre- pubertal state of low estrogen in both male and female animals. Interestingly, when estrogen is exogenously administered we observe a remarkable sex-difference in response to estrogen neuroprotection. We observed that a single intravenous estrogen dose administered at a clinically relevant time point following CA/CPR (30 min) provides protection to the female brain, while having no effect in the male brain. Therefore, the aims of the current proposal are designed to further characterize our novel pediatric cardiac arrest model and begin to elucidate the molecular mechanisms of sexually dimorphic estrogen neuroprotection observed at this developmental stage. Therefore, we will 1) establish the role of estrogen in determining neuronal injury following pediatric cardiac arrest and 2) determine the relative contribution of estrogen receptors alpha and beta (ER? and ER?) in estrogen neuroprotection. 3) Finally, determine the molecular mechanism of estrogen neuroprotection in pediatric cardiac arrest.

Public Health Relevance

Cardiac arrest is an important cause of mortality and poor neurological outcome in children, with approximately 16,000 arrests occurring each year in the US. Unfortunately, there are currently no drugs available in the United States to improve outcome and quality of life following cardiac arrest in children. The proposed studies will characterize the response of childhood brain to cardiac arrest and demonstrate that estrogen is a novel candidate for acute treatment of cardiac arrest in the pediatric population.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS046072-14
Application #
9208165
Study Section
Brain Injury and Neurovascular Pathologies Study Section (BINP)
Program Officer
Koenig, James I
Project Start
2002-09-30
Project End
2019-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
14
Fiscal Year
2017
Total Cost
$306,140
Indirect Cost
$109,265
Name
University of Colorado Denver
Department
Pharmacology
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Orfila, James E; McKinnon, Nicole; Moreno, Myriam et al. (2018) Cardiac Arrest Induces Ischemic Long-Term Potentiation of Hippocampal CA1 Neurons That Occludes Physiological Long-Term Potentiation. Neural Plast 2018:9275239
Orfila, James E; Grewal, Himmat; Dietz, Robert M et al. (2017) Delayed inhibition of tonic inhibition enhances functional recovery following experimental ischemic stroke. J Cereb Blood Flow Metab :271678X17750761
Terry, Peter B; Traystman, Richard J (2016) The Clinical Significance of Collateral Ventilation. Ann Am Thorac Soc 13:2251-2257
Dietz, R M; Deng, G; Orfila, J E et al. (2016) Therapeutic hypothermia protects against ischemia-induced impairment of synaptic plasticity following juvenile cardiac arrest in sex-dependent manner. Neuroscience 325:132-41
Quillinan, Nidia; Herson, Paco S; Traystman, Richard J (2016) Neuropathophysiology of Brain Injury. Anesthesiol Clin 34:453-64
Deng, G; Yonchek, J C; Quillinan, N et al. (2014) A novel mouse model of pediatric cardiac arrest and cardiopulmonary resuscitation reveals age-dependent neuronal sensitivities to ischemic injury. J Neurosci Methods 222:34-41
Deng, Guiying; Carter, Jessica; Traystman, Richard J et al. (2014) Pro-inflammatory T-lymphocytes rapidly infiltrate into the brain and contribute to neuronal injury following cardiac arrest and cardiopulmonary resuscitation. J Neuroimmunol 274:132-40
Herson, Paco S; Traystman, Richard J (2014) Animal models of stroke: translational potential at present and in 2050. Future Neurol 9:541-551
Herson, Paco S; Bombardier, Chris G; Parker, Susan M et al. (2013) Experimental pediatric arterial ischemic stroke model reveals sex-specific estrogen signaling. Stroke 44:759-63
Planas, Anna M; Traystman, Richard J (2011) Advances in translational medicine 2010. Stroke 42:283-4

Showing the most recent 10 out of 23 publications