Recent studies supported by this grant have begun to fill a major gap in our knowledge regarding neuroinflammation, survival signaling, and protection of the penumbra in experimental stroke. We have found that docosahexaenoic acid (DHA), an omega-3 essential fatty acid-family member, which is selectively enriched and avidly retained in the central nervous system (CNS), upregulates cellular and molecular events when systemically administered that counteract injury and, in turn, exert protection after transient middle cerebral artery occlusion (MCAo). We have discovered that DHA is the precursor of the stereospecific and potent mediator, neuroprotectin D1 (NPD1), and very recently we uncovered during MCAo in the penumbra a novel DHA-derived mediator, which we named neuroprotectin D2 (NPD2). These two docosanoids, through synergizing of their bioactivity, may be critical in driving the protective beneficial effects of DHA. In addition, we have demonstrated that a low molecular weight platelet-activating factor (PAF)-receptor antagonist, LAU-0901 (developed in our laboratory), downregulates neuroinflammation and elicits protection. In both instances, protection has relatively ample windows of post-occlusion, is long-lasting, and correlates with neurobehavioral improvement. Our central hypothesis for the next funding period is that upregulation of DHA survival signaling elicits sustained cellular and behavioral protection of the penumbra after MCAo. We will test this hypothesis in experiments where we drive upregulation of survival signaling by DHA-derived mediators (NPD1 and NPD2) and by neuroinflammatory antagonism (LAU-0901) using MCAo, high resolution magnetic resonance imaging (MRI), primary cell cultures, and LC-PDA-ESI-MS/MS-based mediator lipidomic analysis. We will test the following specific aims:
Specific Aim 1 - To test the prediction that the novel DHA-derived mediator, NPD2, which is generated in the penumbra during brain ischemia-reperfusion, elicits neuroprotection;
Specific Aim 2 - To test the prediction that NPD1 and NPD2 target survival signaling and pro-inflammatory genes;
Specific Aim 3 - To test the prediction that blockage of the PAF receptor elicits penumbra protection after MCAo, downregulating neuroinflammatory signaling.
Specific Aim 4 - To test the hypothesis that neuroinflammatory antagonism in combination with docosanoid-mediated survival signaling promotes sustained protection of the penumbra. These findings have the potential to open a new translational avenue for clinical therapies of cerebrovascular diseases.

Public Health Relevance

Docosahexaenoic acid (DHA), an omega-3 essential fatty acid-family member that is selectively enriched and avidly retained in the central nervous system (CNS), upregulates the formation of novel mediators in the penumbra that counteract injury and, in turn, exert protection after transient middle cerebral artery occlusion (MCAo), which includes platelet activating factor (PAF) antagonism. Our central hypothesis is that upregulation of DHA survival signaling elicits sustained cellular and behavioral protection of the penumbra after MCAo. These findings have the potential to open a new translational avenue for clinical therapies of cerebrovascular diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS046741-09
Application #
8277293
Study Section
Brain Injury and Neurovascular Pathologies Study Section (BINP)
Program Officer
Bosetti, Francesca
Project Start
2003-07-01
Project End
2015-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
9
Fiscal Year
2012
Total Cost
$304,413
Indirect Cost
$90,038
Name
Louisiana State Univ Hsc New Orleans
Department
Neurosciences
Type
Schools of Medicine
DUNS #
782627814
City
New Orleans
State
LA
Country
United States
Zip Code
70112
Hong, Sung-Ha; Belayev, Ludmila; Khoutorova, Larissa et al. (2014) Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J Neurol Sci 338:135-41
Bazan, Nicolas G (2014) Is there a molecular logic that sustains neuronal functional integrity and survival? Lipid signaling is necessary for neuroprotective neuronal transcriptional programs. Mol Neurobiol 50:1-5
Williams, Jill J; Mayurasakorn, Korapat; Vannucci, Susan J et al. (2013) N-3 fatty acid rich triglyceride emulsions are neuroprotective after cerebral hypoxic-ischemic injury in neonatal mice. PLoS One 8:e56233
Bazan, Nicolas G; Calandria, Jorgelina M; Gordon, William C (2013) Docosahexaenoic acid and its derivative neuroprotectin D1 display neuroprotective properties in the retina, brain and central nervous system. Nestle Nutr Inst Workshop Ser 77:121-31
Bazan, N G (2013) The docosanoid neuroprotectin D1 induces homeostatic regulation of neuroinflammation and cell survival. Prostaglandins Leukot Essent Fatty Acids 88:127-9
Bazan, Nicolas G; Eady, Tiffany N; Khoutorova, Larissa et al. (2012) Novel aspirin-triggered neuroprotectin D1 attenuates cerebral ischemic injury after experimental stroke. Exp Neurol 236:122-30
Stark, David T; Bazan, Nicolas G (2011) Neuroprotectin D1 induces neuronal survival and downregulation of amyloidogenic processing in Alzheimer's disease cellular models. Mol Neurobiol 43:131-8
Bazan, Nicolas G; Molina, Miguel F; Gordon, William C (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer's, and other neurodegenerative diseases. Annu Rev Nutr 31:321-51
Stark, David T; Bazan, Nicolas G (2011) Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal cyclooxygenase-2 function, lipid peroxidation, and neuroprotection. J Neurosci 31:13710-21
Palacios-Pelaez, R; Lukiw, Walter J; Bazan, Nicolas G (2010) Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease. Mol Neurobiol 41:367-74

Showing the most recent 10 out of 24 publications