The existence of neural stem cells in the adult central nervous system (CNS) of all mammals, including humans, raises the possibility to self-replace damaged or lost neurons by activation of endogenous neural stem cells or transplantation of in vitro expanded stem cells and their progeny derived from the same person. For the full potential of adult neural stem cells to be realized, we need to identify the origin and source of adult neural stem cells, to understand the mechanisms underlying their proliferation, fate determination, and importantly in the case of neuronal lineages, to characterize their functional properties. In the intact mammalian CNS, active neurogenesis only occurs in discrete regions with mostly gliogenesis in other regions. Multipotent neural progenitors, however, can be isolated from both neurogenic and non-neurogenic regions. Since neurological diseases and injury occur in diverse regions of the CNS, including non-neurogenic regions, it is important to determine whether endogenous adult neural progenitors only exist in neurogenic regions or they are widely distributed and their neurogenic potentials are limited by their local environment. It is also important to determine whether in vitro expanded neural progenitors derived from different regions of the adult CNS behavior exhibit similar properties. Specifically, we need to understand whether cell-intrinsic differences between neural progenitors from different regions of the adult CNS, especially from non-neurogenic regions, (1) will influence their response to extrinsic stimulations for differentiation and maturation, and (2) will limit their capacity to acquire full spectrum of functional properties of mature CNS neurons. We have established multipotent clonal lines of adult neural progenitors derived from different regions of the adult CNS and developed methods to investigate their fate determination and measure their functional and electrophysiological properties. In this project, we propose to use adult neural progenitors from hippocampus (neurogenic region) and spinal cord (non-neurogenic region) as examples to examine the fate specification and maturation of in vitro expanded neural progenitors and the underlying molecular mechanisms. In particular, we will characterize the functional properties of neuronal progeny of different adult neural progenitors with immunocytochemistry, electron microscopy, FM imaging and electrophysiology. Finally, we will determine the intrinsic neurogenic potentials of endogenous progenitors of adult spinal cord by a set of transplantation studies

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Molecular, Cellular and Developmental Neurosciences 2 (MDCN)
Program Officer
Owens, David F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Wen, Zhexing; Christian, Kimberly M; Song, Hongjun et al. (2016) Modeling psychiatric disorders with patient-derived iPSCs. Curr Opin Neurobiol 36:118-27
Zhang, Hongsheng; Kang, Eunchai; Wang, Yaqing et al. (2016) Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun 7:
Qian, Xuyu; Nguyen, Ha Nam; Song, Mingxi M et al. (2016) Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell 165:1238-54
Tang, Hengli; Hammack, Christy; Ogden, Sarah C et al. (2016) Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem Cell 18:587-90
Gebara, Elias; Bonaguidi, Michael Anthony; Beckervordersandforth, Ruth et al. (2016) Heterogeneity of Radial Glia-Like Cells in the Adult Hippocampus. Stem Cells 34:997-1010
Zeng, Yaxue; Yao, Bing; Shin, Jaehoon et al. (2016) Lin28A Binds Active Promoters and Recruits Tet1 to Regulate Gene Expression. Mol Cell 61:153-60
Sun, Gerald J; Zhou, Yi; Stadel, Ryan P et al. (2015) Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proc Natl Acad Sci U S A 112:9484-9
Yu, Huimei; Su, Yijing; Shin, Jaehoon et al. (2015) Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nat Neurosci 18:836-43
Brennand, Kristen J; Marchetto, M Carol; Benvenisty, Nissim et al. (2015) Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders. Stem Cell Reports 5:933-45
Sun, Jiaqi; Bonaguidi, Michael A; Jun, Heechul et al. (2015) A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation. Mol Brain 8:52

Showing the most recent 10 out of 65 publications