Despite advances in our understanding of neuronal responses to cellular stress, interventions for acute neuronal injury remain elusive. One novel avenue of investigation is to identify changes in neuronal metabolism incurred as a consequence of cerebral ischemia. AMP-activated protein kinase (AMPK) is a protein kinase that plays a key regulatory role in energy metabolism in both the brain and peripheral tissues. AMPK is activated via phosphorylation in times of energy demand, as monitored by increasing AMP and declining ATP levels. AMPK reduces fatty acid, cholesterol, and protein biosynthesis and increases catabolic, ATP generating pathways. Recently, numerous stimuli including hypoxia, ischemia/reoxygenation injury, NAD, peroxynitrite (ONOO) and nitric oxide (NO) have been shown to activate AMPK suggesting that AMPK plays a critical role in the response to oxidative stress. We have shown that robust activation of AMPK occurs after middle cerebral artery occlusion (MCAO). Interestingly, this stroke-induced elevation in AMPK is detrimental, as pharmacological inhibition of AMPK is dramatically neuroprotective.
In aim 1 we will test the hypothesis that reduction in AMPK activation leads to sustained neuroprotection and functional improvement after stroke. The effects of pharmacological agents that decrease AMPK activation will be examined.
Aim 2 will evaluate the response to pharmacological activation of AMPK after MCAO.
In Aim 3 we will examine animals with targeted deletions of the catalytic subunit of AMPK to confirm our pharmacological data and determine the isoform responsible for the neurotoxicity seen after MCAO.
In Aim 4 we will examine the hypothesis that AMPK activation leads to neuronal damage specifically via activation of neuronal NOS (nNOS). Elucidation of the role of AMPK in ischemia may lead to the development of novel treatments for stroke. Relevance: Stroke is the leading cause of disability in the U.S. Interfering with metabolic pathways could prevent or delay cell death by reducing energy demand in the damaged brain. Delaying cell death could prolong the """"""""therapeutic window"""""""" in stroke. A multi-faceted approach is clearly needed to develop efficacious neuroprotective agents that will benefit stroke patients. Manipulation of AMPK levels represents a novel approach to neuroprotection. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS050505-01A2
Application #
7091220
Study Section
Special Emphasis Panel (ZRG1-CND-L (03))
Program Officer
Jacobs, Tom P
Project Start
2006-03-01
Project End
2011-02-28
Budget Start
2006-03-01
Budget End
2007-02-28
Support Year
1
Fiscal Year
2006
Total Cost
$333,000
Indirect Cost
Name
University of Connecticut
Department
Neurology
Type
Schools of Medicine
DUNS #
022254226
City
Farmington
State
CT
Country
United States
Zip Code
06030
Bravo-Alegria, Javiera; McCullough, Louise D; Liu, Fudong (2017) Sex differences in stroke across the lifespan: The role of T lymphocytes. Neurochem Int 107:127-137
McCullough, Louise D; Mirza, Mehwish A; Xu, Yan et al. (2016) Stroke sensitivity in the aged: sex chromosome complement vs. gonadal hormones. Aging (Albany NY) 8:1432-41
Venna, Venugopal Reddy; Benashski, Sharon E; Chauhan, Anjali et al. (2015) Inhibition of glycogen synthase kinase-3? enhances cognitive recovery after stroke: the role of TAK1. Learn Mem 22:336-43
Mirza, Mehwish A; Ritzel, Rodney; Xu, Yan et al. (2015) Sexually dimorphic outcomes and inflammatory responses in hypoxic-ischemic encephalopathy. J Neuroinflammation 12:32
Venna, Venugopal Reddy; Verma, Rajkumar; O'Keefe, Lena M et al. (2014) Inhibition of mitochondrial p53 abolishes the detrimental effects of social isolation on ischemic brain injury. Stroke 45:3101-4
Liu, Fudong; McCullough, Louise D (2014) The middle cerebral artery occlusion model of transient focal cerebral ischemia. Methods Mol Biol 1135:81-93
Manwani, Bharti; Friedler, Brett; Verma, Rajkumar et al. (2014) Perfusion of ischemic brain in young and aged animals: a laser speckle flowmetry study. Stroke 45:571-8
McCullough, Louise D; Tarabishy, Sami; Liu, Lin et al. (2013) Inhibition of calcium/calmodulin-dependent protein kinase kinase ? and calcium/calmodulin-dependent protein kinase IV is detrimental in cerebral ischemia. Stroke 44:2559-66
Manwani, Bharti; McCullough, Louise D (2013) Function of the master energy regulator adenosine monophosphate-activated protein kinase in stroke. J Neurosci Res 91:1018-29
Mirza, Mehwish A; Capozzi, Lori A; Xu, Yan et al. (2013) Knockout of vascular early response gene worsens chronic stroke outcomes in neonatal mice. Brain Res Bull 98:111-21

Showing the most recent 10 out of 46 publications