Compared to most other organ systems, normal brain function requires a disproportionately large energy supply, and even transient disruption of brain metabolism can contribute to catastrophic loss of cognitive or motor function in a wide range of neurodegenerative disorders. Ischemic insults can lead to unregulated release of the neurotransmitter glutamate, and lead to inappropriate overexcitation of neurons to the point of triggering cell death. The process of cell damage following excessive glutamate receptor activation has been termed """"""""excitotoxicity"""""""", and may also be involved in a range of disorders including seizure activity, Parkinson's Disease and ALS. Strategies that maintain appropriate metabolic function may be a critical consideration for the design of future therapeutic interventions for excitotoxic injuries. The success of such interventions relies on understanding metabolic demands involved in different types of glutamate excitoxicity. Experiments in this proposal will evaluate mitochondrial function in acute hippocampal slices, to evaluate the mechanisms involved in mitochondrial function changes in situ, following glutamate receptor stimulation. A major approach used to study mitochondrial function will be fluorescence imaging of intrinsic metabolic signals, an approach which has been validated in many biochemical and some imaging studies, but which has received a resurgence of interest because of the application of high resolution imaging to intact preparations. The use of imaging approaches in acute slices allows the contributions of glial and neuron metabolism to be differentiated in intact preparations. Responses to endogenously-released glutamate (either during electrical depolarization or hypoxic/hypoglycemic challenges) to be compared with responses to glutamate receptor subtype-selective agonists. Single- and 2-photon imaging will be used to identify cellular sources of mitochondrial signals, single cell electrophysiology/imaging to identify mechanisms and cells responsible for metabolic changes and pharmacological interventions that selectively modify metabolic pathways responses in neurons vs glia. Intrinsic fluorescence studies will be complemented by fluorescence imaging of mitochondrial inner membrane potential, and single cell electrophysiological analysis of ionic fluxes contributing to metabolic dysfunction. Hippocampal CA1 neurons will be the subject of most studies, because of their sensitivity to excitotoxic damage and the extensive literature on mechanisms of hippocampal pyramidal neuron physiology and mechanisms of excitotoxic cell death. For studies of mitochondrial function in neurons destined to die following transient ischemia (Specific Aim 3), we will utilize preparations from gerbils subjected to transient forebrain ischemia.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS051288-04
Application #
7540393
Study Section
Special Emphasis Panel (ZRG1-NDBG (09))
Program Officer
Gubitz, Amelie
Project Start
2006-01-01
Project End
2010-06-30
Budget Start
2009-01-01
Budget End
2010-06-30
Support Year
4
Fiscal Year
2009
Total Cost
$260,267
Indirect Cost
Name
University of New Mexico
Department
Neurosciences
Type
Schools of Medicine
DUNS #
868853094
City
Albuquerque
State
NM
Country
United States
Zip Code
87131
Carlson, Andrew P; Abbas, Mohammad; Alunday, Robert L et al. (2018) Spreading depolarization in acute brain injury inhibited by ketamine: a prospective, randomized, multiple crossover trial. J Neurosurg :1-7
Reinhart, Katelyn M; Shuttleworth, C William (2018) Ketamine reduces deleterious consequences of spreading depolarizations. Exp Neurol 305:121-128
Hartings, Jed A; Shuttleworth, C William; Kirov, Sergei A et al. (2017) The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão's legacy. J Cereb Blood Flow Metab 37:1571-1594
Lindquist, Britta E; Shuttleworth, C William (2017) Evidence that adenosine contributes to Leao's spreading depression in vivo. J Cereb Blood Flow Metab 37:1656-1669
Dreier, Jens P; Fabricius, Martin; Ayata, Cenk et al. (2017) Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group. J Cereb Blood Flow Metab 37:1595-1625
Hartings, Jed A; Li, Chunyan; Hinzman, Jason M et al. (2017) Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations. J Cereb Blood Flow Metab 37:1857-1870
Poddar, Ranjana; Rajagopal, Sathyanarayanan; Shuttleworth, C William et al. (2016) Zn2+-dependent Activation of the Trk Signaling Pathway Induces Phosphorylation of the Brain-enriched Tyrosine Phosphatase STEP: MOLECULAR BASIS FOR ZN2+-INDUCED ERK MAPK ACTIVATION. J Biol Chem 291:813-25
Santos, Edgar; León, Fiorella; Silos, Humberto et al. (2016) Incidence, hemodynamic, and electrical characteristics of spreading depolarization in a swine model are affected by local but not by intravenous application of magnesium. J Cereb Blood Flow Metab 36:2051-2057
Seidel, Jessica L; Escartin, Carole; Ayata, Cenk et al. (2016) Multifaceted roles for astrocytes in spreading depolarization: A target for limiting spreading depolarization in acute brain injury? Glia 64:5-20
Seidel, Jessica L; Faideau, Mathilde; Aiba, Isamu et al. (2015) Ciliary neurotrophic factor (CNTF) activation of astrocytes decreases spreading depolarization susceptibility and increases potassium clearance. Glia 63:91-103

Showing the most recent 10 out of 36 publications