Plasma membrane calcium ATPases (PMCAs) pump Ca2+ out of all animal cells. As components of the Ca2+ signaling """"""""toolbox"""""""", the PMCAs are localized in distinct plasma membrane domains. The importance of proper membrane targeting is illustrated by diseases characterized by the absence of specific PMCA isoforms in the membrane, such as deafness caused by a lack of PMCA2 in cochlear hair cell stereocilia. The long-term goal is to understand the mechanism and functional impact of specific membrane targeting of the PMCAs.
The specific aims are (1) to identify the apical targeting elements in PMCA2 splice variants;(2) to determine if and how PDZ protein interactions stabilize PMCA2 in the apical membrane;(3) to determine if specific localization of PMCA2 splice variants alters trans-epithelial Ca2+ flux and global Ca2+ signaling in polarized epithelial cells;and (4) to determine the subcellular distribution and identify neuronal targeting elements of PMCA2 variants in hippocampal neurons. The studies will involve confocal fluorescence microscopy and two-hybrid interaction analyses to identify specific targeting elements of PMCA2 splice variants. Fluorescence recovery after photobleaching and half-life studies will be employed to analyze the membrane dynamics of PMCA2 isoforms, and light and electron microscopy will be used to determine the localization of these pumps in adult rat hippocampus and cultured neurons. Functional studies will involve trans-epithelial Ca2+ flux measurements and ratiometric Ca2+ imaging in polarized MDCK kidney cells. This work will explore the novel concept that the physiological role of the PMCAs is tightly linked to their precise localization in the membrane. Relevance to public health: PMCA2 is abundant in neurons and is specifically localized within these cells. Although intracellular Ca2+ movements are an essential part of neurotransduction, the relative roles of the channels and pumps which control Ca2+ movements are not well understood. These studies will help us understand the mechanisms by which PMCA2 contributes to control of Ca2+. Understanding these mechanisms will help us understand and fight diseases caused by defects in local calcium regulation, such as hearing loss and neuronal degeneration in aging.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Neurotransporters, Receptors, and Calcium Signaling Study Section (NTRC)
Program Officer
Stewart, Randall R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Strehler, Emanuel E (2013) Plasma membrane calcium ATPases as novel candidates for therapeutic agent development. J Pharm Pharm Sci 16:190-206
Antalffy, Geza; Mauer, Amy S; Paszty, Katalin et al. (2012) Plasma membrane calcium pump (PMCA) isoform 4 is targeted to the apical membrane by the w-splice insert from PMCA2. Cell Calcium 51:171-8
Penniston, John T; Caride, Ariel J; Strehler, Emanuel E (2012) Alternative pathways for association and dissociation of the calmodulin-binding domain of plasma membrane Ca(2+)-ATPase isoform 4b (PMCA4b). J Biol Chem 287:29664-71
Strehler, Emanuel E (2011) Emanuel Strehler's work on calcium pumps and calcium signaling. World J Biol Chem 2:67-72
Antalffy, Géza; Caride, Ariel J; Pászty, Katalin et al. (2011) Apical localization of PMCA2w/b is enhanced in terminally polarized MDCK cells. Biochem Biophys Res Commun 410:322-7
Enyedi, Agnes; Strehler, Emanuel E (2011) Regulation of apical membrane enrichment and retention of plasma membrane Ca ATPase splice variants by the PDZ-domain protein NHERF2. Commun Integr Biol 4:340-3
Mangialavori, Irene C; Caride, Ariel J; Rossi, Rolando C et al. (2011) Diving Into the Lipid Bilayer to Investigate the Transmembrane Organization and Conformational State Transitions of P-type Ion ATPases. Curr Chem Biol 5:118-129
Brandenburger, Timo; Strehler, Emanuel E; Filoteo, Adelaida G et al. (2011) Switch of PMCA4 splice variants in bovine epididymis results in altered isoform expression during functional sperm maturation. J Biol Chem 286:7938-46
Juranic, Nenad; Atanasova, Elena; Filoteo, Adelaida G et al. (2010) Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif. J Biol Chem 285:4015-24
Burette, A C; Strehler, E E; Weinberg, R J (2010) A plasma membrane Ca2+ ATPase isoform at the postsynaptic density. Neuroscience 169:987-93

Showing the most recent 10 out of 18 publications