The Research Plan describes a series of experiments that will examine how spatial information is processed in the mammalian brain. In previous studies a population of neurons was identified within the mammillary nuclei to anterior thalamus to hippocampal formation axis that discharge as a function of the animal's head direction (HD), independent of the animal's behavior and spatial location. This spatial signal provides a model system for examining how primary sensory information, entering through various sensory pathways, is transformed into a higher level cognitive signal representing the organism's spatial relationship with its environment. The mechanisms that accomplish this transformation in the central nervous system are not known.
The first aim contains four experiments and is designed to determine how the HD signal is derived and processed from known sensory inputs.
This aim also determines the role of the HD system in generating the recently discovered grid cell representation in entorhinal cortex.
The second aim will better define the underlying anatomical connections within the HD cell circuit at the brainstem level.
The third aim determines how visual landmark spatial information is processed in the brain.
The fourth aim addresses how animals use the HD signal to guide behavior by addressing the link between HD cell responses and behavior in a spatial task. In sum, these studies will provide insight into how spatial information is organized and processed in the brain and will enhance our understanding of the functional role of HD cells during navigation. The results will have implications for human health and behavior. It is common for elderly patients and patients with Alzheimer's disease, a disease often associated with marked pathology in limbic system structures, to experience spatial disorientation to the extent that constant supervision is required. Learning how spatial information is processed in the rat brain will give us clues about the complex nature of spatial processes in humans.

Public Health Relevance

The results from these experiments will provide key information in understanding the basic neural mechanisms underlying spatial orientation. Ultimately, we would like to develop a better neurophysiological understanding of how spatial orientation information is organized in the brain to enable an organism to navigate accurately. This information could then be used to develop effective treatments for spatial disorders such as vertigo, motion sickness, and navigational disorders. Further, it is common for patients with vestibular disorders, elderly patients, and patients with Alzheimer's disease, a disease often associated with marked pathology in limbic system structures, to experience spatial disorientation to the extent that constant supervision is required. Learning how spatial information is processed in the rat brain will provide important clues about the complex nature of spatial processes in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS053907-19
Application #
8895422
Study Section
Neurobiology of Learning and Memory Study Section (LAM)
Program Officer
Chen, Daofen
Project Start
1992-09-15
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
19
Fiscal Year
2015
Total Cost
$345,625
Indirect Cost
$126,875
Name
Dartmouth College
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Yoder, Ryan M; Chan, Jeremy H M; Taube, Jeffrey S (2017) Acetylcholine contributes to the integration of self-movement cues in head direction cells. Behav Neurosci 131:312-24
Butler, William N; Smith, Kyle S; van der Meer, Matthijs A A et al. (2017) The Head-Direction Signal Plays a Functional Role as a Neural Compass during Navigation. Curr Biol 27:1259-1267
Peck, James R; Taube, Jeffery S (2017) The postrhinal cortex is not necessary for landmark control in rat head direction cells. Hippocampus 27:156-168
Todd, Travis P; Mehlman, Max L; Keene, Christopher S et al. (2016) Retrosplenial cortex is required for the retrieval of remote memory for auditory cues. Learn Mem 23:278-88
Valerio, Stephane; Taube, Jeffrey S (2016) Head Direction Cell Activity Is Absent in Mice without the Horizontal Semicircular Canals. J Neurosci 36:741-54
Winter, Shawn S; Mehlman, Max L; Clark, Benjamin J et al. (2015) Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex. Curr Biol 25:2493-502
Yoder, Ryan M; Peck, James R; Taube, Jeffrey S (2015) Visual landmark information gains control of the head direction signal at the lateral mammillary nuclei. J Neurosci 35:1354-67
Winter, Shawn S; Clark, Benjamin J; Taube, Jeffrey S (2015) Spatial navigation. Disruption of the head direction cell network impairs the parahippocampal grid cell signal. Science 347:870-874
Butler, William N; Taube, Jeffrey S (2015) The nucleus prepositus hypoglossi contributes to head direction cell stability in rats. J Neurosci 35:2547-58
Shinder, M E; Taube, J S (2014) Resolving the active versus passive conundrum for head direction cells. Neuroscience 270:123-38

Showing the most recent 10 out of 38 publications