The circadian clock is thought to coordinate aspects of mammalian physiology such as metabolism and the sleep wake cycle. Genetic and molecular characterization of the circadian oscillator shows that interlocked transcriptional/translational feedback loops underlie these rhythms. Recent findings have reinforced the notion that the primary feedback loop plays a vital role in circadian clock function. In this loop, two bHLH-PAS transactivators, Clock and Bmall, heterodimerize and stimulate circadian expression of two potent transcriptional repressors, Cryptochrome 1 and Cryptochrome 2. Once translated, Cry proteins then form a complex with the Period and casein kinase 1 proteins, and translocate to the nucleus where they potently represses Clock/Bmall transcription. This results in the shut down of Cry gene transcription, which eventually results in 'de-repression' of the Clock/BmaM complex and re-initiation of the transcriptional cycle after -24 hours. Although changes in chromatin remodeling and histone acetylation and methylation have been observed to accompany Cry protein repression activity, the molecular mechanism by which Cry proteins act to repress the Clock/Bmall complex remains to be elucidated. Here we propose molecular, cellular, and physiological characterization of the mechanisms underlying clock function including Cry repression. Furthermore, we propose generation of a mouse model that is uncoupled from Cry-mediated feedback repression (a circadian clock knockout) and use this model to investigate the hypothesis that circadian oscillation, rather than the specific clock factors Clock and Bmall, is required to maintain normal metabolic function. Finally, we propose a mechanism-based strategy to identify and characterize small molecules with the capacity to perturb oscillator function via effects on the negative feedback loop. Thus successful completion of the proposed research would result in an important animal model for ascribing circadian clock function in physiology, as well as lay the foundation for mechanism based small molecule perturbation of the clock. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS054794-01A2
Application #
7318271
Study Section
Biological Rhythms and Sleep Study Section (BRS)
Program Officer
Mitler, Merrill
Project Start
2007-05-01
Project End
2012-03-31
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
1
Fiscal Year
2007
Total Cost
$440,902
Indirect Cost
Name
University of Pennsylvania
Department
Pharmacology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Yang, Yanyan; Adebali, Ogun; Wu, Gang et al. (2018) Cisplatin-DNA adduct repair of transcribed genes is controlled by two circadian programs in mouse tissues. Proc Natl Acad Sci U S A 115:E4777-E4785
Foteinou, Panagiota T; Venkataraman, Anand; Francey, Lauren J et al. (2018) Computational and experimental insights into the circadian effects of SIRT1. Proc Natl Acad Sci U S A 115:11643-11648
Wu, Gang; Ruben, Marc D; Schmidt, Robert E et al. (2018) Population-level rhythms in human skin with implications for circadian medicine. Proc Natl Acad Sci U S A 115:12313-12318
Giovannone, Adrian J; Winterstein, Christine; Bhattaram, Pallavi et al. (2018) Soluble syntaxin 3 functions as a transcriptional regulator. J Biol Chem 293:5478-5491
Anafi, Ron C; Francey, Lauren J; Hogenesch, John B et al. (2017) CYCLOPS reveals human transcriptional rhythms in health and disease. Proc Natl Acad Sci U S A 114:5312-5317
Hughes, Michael E; Abruzzi, Katherine C; Allada, Ravi et al. (2017) Guidelines for Genome-Scale Analysis of Biological Rhythms. J Biol Rhythms 32:380-393
Krishnaiah, Saikumari Y; Wu, Gang; Altman, Brian J et al. (2017) Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism. Cell Metab 25:961-974.e4
Francey, Lauren J; Hogenesch, John B (2017) It's not all in the brain. Elife 6:
Ruben, Marc D; Hogenesch, John B (2017) Circadian Rhythms: Move Over Neurons - Astrocytes Mediate SCN Clock Function. Curr Biol 27:R350-R352
Love, Michael I; Hogenesch, John B; Irizarry, Rafael A (2016) Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nat Biotechnol 34:1287-1291

Showing the most recent 10 out of 56 publications