Accurate mapping of normal and abnormal patterns of brain development in fetuses and premature neonates is a key factor in early detection of developmental disorders as well as understanding how external factors can influence early brain growth. In our previous funding period we developed and applied novel fetal MRI motion correction and reconstruction techniques to produce the first 3D and 4D maps of normal human brain growth in-utero and to identify early cortical folding abnormalities in ventriculomegaly (VM), the most commonly identified fetal brain abnormality. These findings pose the question of whether measureable perturbations in tissue microstructure may be present along with these larger scale anatomical differences. Such changes could provide a clearer indicator of cortical damage than simply folding alone. In this renewal we therefore propose to develop new techniques that allow the general use diffusion MRI methods in un-sedated fetal studies. These methods, previously used in adults and children, can provide a unique new window into microstructural properties of fetal brain tissue. However, the technique has an important limitation for practical whole brain fetal imaging: it makes use of repeated acquisitions where subtle changes in MR signal provide the measure of interest. Fetal head motion within the scanner can perturb measurement location, orientation and signal level due to the changing relationship between the anatomy and scanner.
Our first aim i s to develop a novel unified framework that can make use of image acquisition physics for correction of both signal level and measurement geometry in diffusion weighted imaging. We will then develop complementary analysis tools that can account for the varying spatial and temporal sample density in the functional and diffusion data arising from fetal head motion. We will use these techniques to image a cross-section of normal fetuses and construct a normative spatio-temporal atlas of combined structural and micro-structural measurements in the fetal brain covering the critical age of first clinical MRI scan and the following period of cortical folding. Finally, we will use te same techniques to image and analyze data from a clinical group of fetuses with ventriculomegaly with the aim of detecting early micro-structural differences that are related to our previous cortical findings in fetuses exhibiting VM. The project as a whole has many wider applications beyond this common condition and would be a major step in understanding how functional specialization in the cortex relates to brain anatomy in both fetuses and premature neonates.

Public Health Relevance

Clinically, improved in-utero evaluation of the fetal brain is a key concern for obstetricians and pediatricians in managing complex pregnancies and there is also now an increasing public health awareness of the influence of the in-utero environment, in terms of factors such as stress and diet, on long-term health in later life. Diffusion imaging of te brain in childhood has revealed the presence of early markers of later cognitive and neuropsychological problems. The ability to map these same properties in-utero, promises to provide a rich set of very specific early markers that can be used to understand the impact of the in-utero environment on brain development and feasibly provide a route to the use of early neuro-protective agents and procedures early in childhood.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS055064-09
Application #
8895421
Study Section
Special Emphasis Panel (ZRG1-SBIB-V (82))
Program Officer
Hirtz, Deborah G
Project Start
2005-12-01
Project End
2018-05-31
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
9
Fiscal Year
2015
Total Cost
$518,636
Indirect Cost
$134,586
Name
University of Washington
Department
Pediatrics
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Kamino, Daphne; Studholme, Colin; Liu, Mengyuan et al. (2018) Postnatal polyunsaturated fatty acids associated with larger preterm brain tissue volumes and better outcomes. Pediatr Res 83:93-101
Pontabry, J; Rousseau, F; Studholme, C et al. (2017) A discriminative feature selection approach for shape analysis: Application to fetal brain cortical folding. Med Image Anal 35:313-326
Rajagopalan, Vidya; Scott, Julia A; Liu, Mengyuan et al. (2017) Complementary cortical gray and white matter developmental patterns in healthy, preterm neonates. Hum Brain Mapp 38:4322-4336
Wang, Xiaojie; Studholme, Colin; Grigsby, Peta L et al. (2017) Folding, But Not Surface Area Expansion, Is Associated with Cellular Morphological Maturation in the Fetal Cerebral Cortex. J Neurosci 37:1971-1983
Blazejewska, Anna I; Seshamani, Sharmishtaa; McKown, Susan K et al. (2017) 3D in utero quantification of T2* relaxation times in human fetal brain tissues for age optimized structural and functional MRI. Magn Reson Med 78:909-916
Seshamani, Sharmishtaa; Blazejewska, Anna I; Mckown, Susan et al. (2016) Detecting default mode networks in utero by integrated 4D fMRI reconstruction and analysis. Hum Brain Mapp 37:4158-4178
Liu, Mengyuan; Kitsch, Averi; Miller, Steven et al. (2016) Patch-based augmentation of Expectation-Maximization for brain MRI tissue segmentation at arbitrary age after premature birth. Neuroimage 127:387-408
Zwicker, Jill G; Miller, Steven P; Grunau, Ruth E et al. (2016) Smaller Cerebellar Growth and Poorer Neurodevelopmental Outcomes in Very Preterm Infants Exposed to Neonatal Morphine. J Pediatr 172:81-87.e2
Adams Waldorf, Kristina M; Stencel-Baerenwald, Jennifer E; Kapur, Raj P et al. (2016) Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat Med 22:1256-1259
Studholme, Colin (2015) Mapping the developing human brain in utero using quantitative MR imaging techniques. Semin Perinatol 39:105-12

Showing the most recent 10 out of 46 publications