Molecular chaperones, such as Hsp70 and Hsp90, may help protect against neurodegenerative disorders, such as Alzheimer's and Huntington's diseases, which are caused by aberrant protein misfolding. However, a dearth of small molecule partners for the chaperones have limited our ability to probe their function in models of these diseases. The long-term goal of the Gestwicki laboratory is to uncover inhibitors and agonists of the chaperones to open new opportunities for exploration in this area. The objective of this particular proposal is to identify and characterize agonists of Hsp70 and use these to study the role of this chaperone in polyglutamine expansion (polyQ) models of Huntington's disease. Our central hypothesis is that direct stimulation of Hsp70 will provide relief from polyQ misfolding. In preliminary studies, we have uncovered small molecules that promote Hsp70's function and protect yeast and mammalian cell models of disease. Moreover, we have used these chemical probes to implicate Hsp70 as a crucial mediator of aggregation. Guided by this strong preliminary evidence, we propose three specific aims: (1) Identify additional small molecules that modify Hsp70's chaperone activity (2) Explore the interaction between these compounds and Hsp70 (3) Use these chemical tools to investigate how Hsp70 protects against polyQ self-assembly. This approach is innovative because other strategies have relied on initiation of the global cellular stress responses to modulate Hsp70 function. In contrast, our approach directly targets the chaperone without perturbing other cellular processes. This is significant because our chemical probes might allow us to, for the first time, identify Hsp70 as a drug target for neurodegenerative disorders and learn more about its role in disease.

Public Health Relevance

Neurodegenerative disease is one of the greatest threats facing an aging population and the outlook for pharmaceutical intervention is uncertain. We have developed a new approach to discovery in this area by directly targeting molecular chaperones.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS059690-02
Application #
7559993
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Sutherland, Margaret L
Project Start
2008-02-01
Project End
2013-01-31
Budget Start
2009-02-01
Budget End
2010-01-31
Support Year
2
Fiscal Year
2009
Total Cost
$286,925
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Pathology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Meister-Broekema, Melanie; Freilich, Rebecca; Jagadeesan, Chandhuru et al. (2018) Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks. Nat Commun 9:5342
Shao, Hao; Li, Xiaokai; Moses, Michael A et al. (2018) Exploration of Benzothiazole Rhodacyanines as Allosteric Inhibitors of Protein-Protein Interactions with Heat Shock Protein 70 (Hsp70). J Med Chem 61:6163-6177
Ran, Xu; Burchfiel, Eileen T; Dong, Bushu et al. (2018) Rational design and screening of peptide-based inhibitors of heat shock factor 1 (HSF1). Bioorg Med Chem 26:5299-5306
Cesa, Laura C; Shao, Hao; Srinivasan, Sharan R et al. (2018) X-linked inhibitor of apoptosis protein (XIAP) is a client of heat shock protein 70 (Hsp70) and a biomarker of its inhibition. J Biol Chem 293:2370-2380
Freilich, Rebecca; Betegon, Miguel; Tse, Eric et al. (2018) Competing protein-protein interactions regulate binding of Hsp27 to its client protein tau. Nat Commun 9:4563
Freilich, Rebecca; Arhar, Taylor; Abrams, Jennifer L et al. (2018) Protein-Protein Interactions in the Molecular Chaperone Network. Acc Chem Res 51:940-949
Mok, Sue-Ann; Condello, Carlo; Freilich, Rebecca et al. (2018) Mapping interactions with the chaperone network reveals factors that protect against tau aggregation. Nat Struct Mol Biol 25:384-393
Ran, Xu; Gestwicki, Jason E (2018) Inhibitors of protein-protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Curr Opin Chem Biol 44:75-86
Young, Zapporah T; Mok, Sue Ann; Gestwicki, Jason E (2018) Therapeutic Strategies for Restoring Tau Homeostasis. Cold Spring Harb Perspect Med 8:
Yaglom, Julia A; Wang, Yongmei; Li, Amy et al. (2018) Cancer cell responses to Hsp70 inhibitor JG-98: Comparison with Hsp90 inhibitors and finding synergistic drug combinations. Sci Rep 8:3010

Showing the most recent 10 out of 92 publications