Immunological synapses are the recently characterized microanatomical structures that underlie immune cellular interactions. Establishment of immunological synapses between CTLs and infected or malignant astrocytes precedes the elimination of these astrocytes from the brain. How individual CTL target cells respond to T cell attack remains poorly understood. We have evidence suggesting that infected astrocytes respond in an active manner to the T cell attack. Our data suggests that target infected astrocytes change from multipolar to unipolar cells, i.e. they adopt a novel polarized phenotype that appears to include a reorganization of the cytoskeleton and intracellular organelles. We will test whether this active cellular reorganization could influence the ultimate outcome of the T cell attack, e.g. death or survival of infected astrocytes. In this application we will test the hypothesis that both infected astrocytes and tumor glioma cells respond in an active manner to T cell attack, and that this response is induced by a T cell-dependent activation of a Rho-GTPase signaling pathway. We will study the astrocyte responses to T cell attack in vivo and in vitro, and analyze the molecular signaling pathways underlying these responses. We believe that understanding the cellular and molecular mechanisms by which infected and malignant astrocytes respond to T cell attack should lead to better ways to eliminate neurological viral infections and brain tumors, enhance therapeutic transgene expression from gene therapy viral vectors, or protect the brain from autoimmune attack. To do so, we propose to explore the cellular and molecular basis of glial cell responses to immune attack both in vivo and in vitro in three Specific Aims.
Specific Aim 1 will test the hypothesis that formation of immunological synapses leads to the polarization of infected astrocytes and that this is dependent on the activation of a Rho-GTPase pathway;
Specific Aim 2 will test whether CTL signaling at mature immunological synapses in vivo between anti-viral T cells and infected astrocytes effectively leads to the death of infected astrocytes, or whether astrocytes can withstand such an attack;
and Specific Aim 3 will test the hypothesis that the effects of anti- tumor T cells on glioma cells are mediated through the formation of immunological synapses.

Public Health Relevance

Immunological synapses form in vivo between antiviral CTLs, and virally infected or malignant astrocytes causing a reorganization of their cellular structure. We believe this response influences the ultimate outcome of the T cell attack, e.g. death or survival of infected or tumor glial cells. We believe that understanding the cellular and molecular mechanisms by which infected and malignant astrocytes respond to T cell attack should lead to better ways of eliminating neurological viral infections and brain tumors, enhance therapeutic transgene expression from gene therapy viral vectors, or protect the brain in cases of autoimmune attack.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
7R01NS061107-04
Application #
8316575
Study Section
Special Emphasis Panel (ZRG1-MDCN-M (02))
Program Officer
Fountain, Jane W
Project Start
2008-08-15
Project End
2013-07-31
Budget Start
2011-07-01
Budget End
2011-07-31
Support Year
4
Fiscal Year
2010
Total Cost
$68,310
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Kamran, Neha; Chandran, Mayuri; Lowenstein, Pedro R et al. (2018) Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy. Clin Immunol 189:34-42
Koschmann, Carl; Farooqui, Zishaan; Kasaian, Katayoon et al. (2017) Multi-focal sequencing of a diffuse intrinsic pontine glioma establishes PTEN loss as an early event. NPJ Precis Oncol 1:32
Chandran, Mayuri; Candolfi, Marianela; Shah, Diana et al. (2017) Single vs. combination immunotherapeutic strategies for glioma. Expert Opin Biol Ther 17:543-554
Kamran, Neha; Kadiyala, Padma; Saxena, Meghna et al. (2017) Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy. Mol Ther 25:232-248
Koschmann, Carl; Nunez, Felipe J; Mendez, Flor et al. (2017) Mutated Chromatin Regulatory Factors as Tumor Drivers in Cancer. Cancer Res 77:227-233
Calinescu, Anda-Alexandra; Yadav, Viveka Nand; Carballo, Erica et al. (2017) Survival and Proliferation of Neural Progenitor-Derived Glioblastomas Under Hypoxic Stress is Controlled by a CXCL12/CXCR4 Autocrine-Positive Feedback Mechanism. Clin Cancer Res 23:1250-1262
Baker, Gregory J; Chockley, Peter; Zamler, Daniel et al. (2016) Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells. Oncoimmunology 5:e1163461
Koschmann, Carl; Calinescu, Anda-Alexandra; Nunez, Felipe J et al. (2016) ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Sci Transl Med 8:328ra28
Kamran, Neha; Candolfi, Marianela; Baker, Gregory J et al. (2016) Gene Therapy for the Treatment of Neurological Disorders: Central Nervous System Neoplasms. Methods Mol Biol 1382:467-82
VanderVeen, Nathan; Raja, Nicholas; Yi, Elizabeth et al. (2016) Preclinical Efficacy and Safety Profile of Allometrically Scaled Doses of Doxycycline Used to Turn ""On"" Therapeutic Transgene Expression from High-Capacity Adenoviral Vectors in a Glioma Model. Hum Gene Ther Methods 27:98-111

Showing the most recent 10 out of 69 publications