Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron degenerative disease and is characterized by a progressive loss of motor neurons in the spinal cord, brain stem and cerebral cortex. It can strike adults of any age, though is most common between the ages of 50-55 years. The molecular mechanisms that cause this disease are unclear and biomarkers specific for ALS are currently unknown. Our preliminary data using mass spectrometry based proteomics identified a panel of protein biomarkers from cerebrospinal fluid (CSF) with a high level of accuracy for diagnosing ALS near the time of clinical symptom onset. We propose to examine a much larger group of ALS and control subjects to further validate and identify protein based biomarkers for ALS. The goals of this proposal are to further explore the CSF proteome of ALS and control subjects to identify peptide and/or protein biomarkers for ALS. We will utilize liquid chromatography based mass spectrometry in a large unbiased screen for peptides that distinguish ALS from control subjects. We will then validate our findings in separate subject groups and generate a mass spectrometry based method to quantify specific peptides within the CSF and/or plasma that distinguish ALS from control subjects. We will then use this panel of biomarkers to distinguish sub-populations of ALS patients based on site of disease onset, age, gender, or rate of disease progression. These studies will generate novel biomarkers for ALS that could be used in future diagnostics for ALS and tested for their ability to monitor disease progression or drug efficacy in clinical trials.

Public Health Relevance

The molecular mechanisms underlying amyotrophic lateral sclerosis (ALS) are unclear and new research directions and hypotheses are necessary to generate novel therapeutic targets. Our proposal will uncover novel peptide and protein biomarkers for ALS. These studies will lead to new insights into disease mechanisms and potential diagnostic determinants for ALS that can be further explored in future studies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
7R01NS061867-04
Application #
8335727
Study Section
Clinical Neuroscience and Neurodegeneration Study Section (CNN)
Program Officer
Gubitz, Amelie
Project Start
2009-06-01
Project End
2014-05-31
Budget Start
2011-09-16
Budget End
2012-05-31
Support Year
4
Fiscal Year
2011
Total Cost
$260,000
Indirect Cost
Name
St. Joseph's Hospital and Medical Center
Department
Type
DUNS #
131606022
City
Phoenix
State
AZ
Country
United States
Zip Code
85013
Nicolas, Aude (see original citation for additional authors) (2018) Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron 97:1268-1283.e6
Bakkar, Nadine; Kovalik, Tina; Lorenzini, Ileana et al. (2018) Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol 135:227-247
Jeromin, Andreas; Bowser, Robert (2017) Biomarkers in Neurodegenerative Diseases. Adv Neurobiol 15:491-528
Vu, Lucas T; Bowser, Robert (2017) Fluid-Based Biomarkers for Amyotrophic Lateral Sclerosis. Neurotherapeutics 14:119-134
Gendron, Tania F; C9ORF72 Neurofilament Study Group; Daughrity, Lillian M et al. (2017) Phosphorylated neurofilament heavy chain: A biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol 82:139-146
Boehringer, Ashley; Garcia-Mansfield, Krystine; Singh, Gurkaran et al. (2017) ALS Associated Mutations in Matrin 3 Alter Protein-Protein Interactions and Impede mRNA Nuclear Export. Sci Rep 7:14529
Li, Yang; Collins, Mahlon; An, Jiyan et al. (2016) Immunoprecipitation and mass spectrometry defines an extensive RBM45 protein-protein interaction network. Brain Res 1647:79-93
Liu, Xiaochen; Lu, Deyi; Bowser, Robert et al. (2016) Expression of Carbonic Anhydrase I in Motor Neurons and Alterations in ALS. Int J Mol Sci 17:
Smith, Richard; Myers, Kathleen; Ravits, John et al. (2015) Amyotrophic lateral sclerosis: Is the spinal fluid pathway involved in seeding and spread? Med Hypotheses 85:576-83
Collins, Mahlon A; An, Jiyan; Peller, Danielle et al. (2015) Total protein is an effective loading control for cerebrospinal fluid western blots. J Neurosci Methods 251:72-82

Showing the most recent 10 out of 24 publications