We identified a unique marker of invading glioma cells that arises from PTP? cleavage. We developed a specific molecular imaging probe that binds to the cleaved PTP? fragment and recognizes glioblastomas. Therefore, we will test the hypothesis that this probe marks high-grade human gliomas and defines the invading tumor margin. We will explore its utility as a diagnostic molecular imaging agent and as a therapeutic. Primary brain tumors commonly arise from supporting glial cells within the central nervous system. These tumors are called gliomas and typically disperse widely throughout the brain making complete surgical resection impossible. The invasive properties of gliomas lead to difficulties in determining the extent of invasion and make this disease virtually incurable with a mean survival of approximately one year. PTP? is a cell surface receptor protein tyrosine phosphatase (RPTP) and a cell adhesion molecule whose expression is down-regulated in human gliomas. Very recent data suggests that during PTP? down-regulation, the protein is proteolyzed and a small fragment remains associated with the glioblastoma cells. Here we describe studies that utilize a unique robust molecular imaging probe for the PTP? fragment and test its effectiveness in vivo. Our hypothesis is that the probe will detect the migrating and invading glioblastomas at the cellular level and can eventually be used in human patients to image the tumors with magnetic resonance imaging (MRI). Identification of key molecular targets such as PTP? will allow development of novel strategies to diagnose, image and eventually treat gliomas. It is envisioned that this probe could also be utilized during surgery to guide neurosurgery of the tumors enabling more complete and precise tumor resection, which will enhance patient survival.
Aim 1 : Determine the extent of association of the cleaved fragment of PTP? with invasiveness of human gliomas of various types and grades.
Aim 2 : Assess the utility of peptide probes to monitor migrating glioma cells in an ex vivo brain slice invasion assay.
Aim 3 : Examine the utility of the probe to detect tumors and migrating glioma cells in vivo in heterotopic and orthotopic human brain tumor models in rodents. Project Narrative We identified a unique marker of invading glioma cells that can be molecularly imaged in vivo. We propose to further characterize this unique marker and to explore its utility as both a diagnostic molecular imaging agent and a therapeutic. We hypothesize that the probe will detect the migrating and invading glioblastomas at the cellular level, therefore, the probe can be used in human patients to image invasive gliomas with magnetic resonance imaging (MRI).

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Cancer Biomarkers Study Section (CBSS)
Program Officer
Fountain, Jane W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
Schools of Medicine
United States
Zip Code
Craig, Sonya E L; Brady-Kalnay, Susann M (2015) Regulation of development and cancer by the R2B subfamily of RPTPs and the implications of proteolysis. Semin Cell Dev Biol 37:108-18
Lathia, Justin D; Li, Meizhang; Sinyuk, Maksim et al. (2014) High-throughput flow cytometry screening reveals a role for junctional adhesion molecule a as a cancer stem cell maintenance factor. Cell Rep 6:117-29
Phillips-Mason, Polly J; Craig, Sonya E L; Brady-Kalnay, Susann M (2014) A protease storm cleaves a cell-cell adhesion molecule in cancer: multiple proteases converge to regulate PTPmu in glioma cells. J Cell Biochem 115:1609-23
Hale, James S; Otvos, Balint; Sinyuk, Maksim et al. (2014) Cancer stem cell-specific scavenger receptor 36 drives glioblastoma progression. Stem Cells 32:1746-58
Kim, Youngmi; Wu, Qiulian; Hamerlik, Petra et al. (2013) Aptamer identification of brain tumor-initiating cells. Cancer Res 73:4923-36
Burden-Gulley, Susan M; Qutaish, Mohammed Q; Sullivant, Kristin E et al. (2013) Single cell molecular recognition of migrating and invading tumor cells using a targeted fluorescent probe to receptor PTPmu. Int J Cancer 132:1624-32
Flavahan, William A; Wu, Qiulian; Hitomi, Masahiro et al. (2013) Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci 16:1373-82
Kaur, Harpreet; Phillips-Mason, Polly J; Burden-Gulley, Susan M et al. (2012) Cadherin-11, a marker of the mesenchymal phenotype, regulates glioblastoma cell migration and survival in vivo. Mol Cancer Res 10:293-304
Kaur, Harpreet; Burden-Gulley, Susan M; Phillips-Mason, Polly J et al. (2012) Protein tyrosine phosphatase mu regulates glioblastoma cell growth and survival in vivo. Neuro Oncol 14:561-73
Craig, Sonya E L; Brady-Kalnay, Susann M (2011) Tumor-derived extracellular fragments of receptor protein tyrosine phosphatases (RPTPs) as cancer molecular diagnostic tools. Anticancer Agents Med Chem 11:133-40

Showing the most recent 10 out of 15 publications