Our long-range goals are to determine the roles and regulation of phosphatidylinositol (3, 5)-bis phosphate (PI3,5P2) in neurons. We recently made the unexpected discovery that PI3, 5P2 is a critical upstream regulator of synaptic strength. PI3,5P2 is in very low abundance. Its synthesis requires the lipid kinase PIKfyve and PIKfyve regulators: Vac14 and Fig4. Our studies of mouse mutants, as well as discovery of human patients with mutations in Fig4, establish the general importance of PI3, 5P2 within the nervous system. We recently made two findings that change current knowledge of the roles of the PI3, 5P2 signaling pathway in neurons. First, the Vac14-PIKfyve-Fig4 complex plays an inhibitory role at excitatory synapses, and affects both presynaptic and postsynaptic function. Second, studies shown here strongly suggest that the Vac14-PIKfyve-Fig4 complex, via its role in endomembrane trafficking, plays a critical role in specific forms of synaptic plasticity. In additin, emerging data from us and others indicate that PI3, 5P2 is a critical upstream regulator of multiple pathways both in neurons and other cell- types. Here we focus on the requirement of PIKfyve, Vac14 and Fig4 for chemical long-term depression and homeostatic down scaling. In addition, in collaboration with Dr. Haoxing Xu (U. Michigan) we have developed a fluorescent probe for PI3,5P2. We anticipate that this probe will greatly expand the ability of us and others to study PI3,5P2 in neurons. The overall goals of this proposal are to 1) Determine whether PI3, 5P2 and PI5P are essential for specific forms of synaptic plasticity. 2) Determine whether calcium is required for the transient activation of PIKfyve, and whether PIKfyve and/or AMPA receptor localization changes during this activation. These proposed studies have the potential to provide significant advances in current knowledge of the molecular basis of synaptic plasticity, as well as advance understanding of molecular mechanisms required for learning and memory.

Public Health Relevance

We recently discovered that the PI3, 5P2 lipid signaling pathway has roles at excitatory synapses. The proposed studies on how PI3, 5P2 modulates synaptic activity, are likely to advance current knowledge of mechanisms of synaptic plasticity. Moreover, they have the potential to establish new insights into learning and memory, as well as insights into selected neuropsychiatric disorders.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Gubitz, Amelie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Anatomy/Cell Biology
Schools of Medicine
Ann Arbor
United States
Zip Code
Kim, Seong M; Roy, Saurabh G; Chen, Bin et al. (2016) Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest 126:4088-4102
Jin, Natsuko; Lang, Michael J; Weisman, Lois S (2016) Phosphatidylinositol 3,5-bisphosphate: regulation of cellular events in space and time. Biochem Soc Trans 44:177-84
Jin, Yui; Strunk, Bethany S; Weisman, Lois S (2015) Close encounters of the lysosome-peroxisome kind. Cell 161:197-8
McCartney, Amber J; Zhang, Yanling; Weisman, Lois S (2014) Phosphatidylinositol 3,5-bisphosphate: low abundance, high significance. Bioessays 36:52-64
McCartney, Amber J; Zolov, Sergey N; Kauffman, Emily J et al. (2014) Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression. Proc Natl Acad Sci U S A 111:E4896-905
Samie, Mohammad; Wang, Xiang; Zhang, Xiaoli et al. (2013) A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev Cell 26:511-24
Bridges, Dave; Ma, Jing-Tyan; Park, Sujin et al. (2012) Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Mol Biol Cell 23:2955-62
Zhang, Yanling; McCartney, Amber J; Zolov, Sergey N et al. (2012) Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)Pâ‚‚ and PI(5)P. EMBO J 31:3442-56
Bridges, Dave; Fisher, Kaleigh; Zolov, Sergey N et al. (2012) Rab5 proteins regulate activation and localization of target of rapamycin complex 1. J Biol Chem 287:20913-21
Zolov, Sergey N; Bridges, Dave; Zhang, Yanling et al. (2012) In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P. Proc Natl Acad Sci U S A 109:17472-7

Showing the most recent 10 out of 14 publications