The establishment of functional neuronal circuits relies on the formation of excess synapses, followed by the elimination of inappropriate connections. Although the stabilization of presynaptic inputs is critical for the development and maintenance of functional circuits, the signals that regulate presynaptic stability are not known. Our preliminary studies suggest that synapse formation in cortical cultures is highly dynamic and involves the stabilization of a subset of synapses in a backdrop of a high rate of synapse formation and elimination. During the peak of synaptogenesis, only about 50% of putative synapses are stable over an hour. We have found that presynaptic stability is strongly correlated with the presence of postsynaptic AMPA but not NMDA receptors. We have identified LRRTM2 as a GluR2-interacting transmembrane protein that affects synapse stability. Based on our preliminary studies we hypothesize that a GluR2- LRRTM2 complex functions as a retrograde signal to regulate presynaptic stability.
The specific aims of this proposal are:
Aim 1 : To determine whether gain or loss of GluR2 receptors affects synapse stability, and to identify the domains of GluR2 that mediate this effect Aim 2: To identify the domains of GluR2 and LRRTM2 that mediate their interaction and to identify the mechanism by which LRRTM2 is recruited to synaptic sites Aim 3: To determine the role of GluR2-LRRTM2 interactions in regulating presynaptic stability and synaptic function These experiments will provide important insights into the mechanisms that regulate synase formation and stability. These mechanisms are likely to be disrupted in neurological diisorders such as Rett Syndrome, Autism, and Alzheimer's disease that are characterized by loss of synapses and may suggest approaches for therapeutic intervention.

Public Health Relevance

The goal of this project is to understand the molecular mechanisms that regulate the formation of synaptic connections in the brain during development. Several childhood neurological disorders, such as Autism, Rett Syndrome, and X-linked mental retardation are characterized by defects in synaptic connectivity. The findings of this project should guide efforts to better understand and develop therapeutic strategies for these disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS064124-04
Application #
8269091
Study Section
Neurodifferentiation, Plasticity, and Regeneration Study Section (NDPR)
Program Officer
Talley, Edmund M
Project Start
2009-05-01
Project End
2013-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
4
Fiscal Year
2012
Total Cost
$331,209
Indirect Cost
$116,834
Name
University of California San Diego
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Wilke, Scott A; Raam, Tara; Antonios, Joseph K et al. (2014) Specific disruption of hippocampal mossy fiber synapses in a mouse model of familial Alzheimer's disease. PLoS One 9:e84349
O'Sullivan, Matthew L; Martini, Francesca; von Daake, Sventja et al. (2014) LPHN3, a presynaptic adhesion-GPCR implicated in ADHD, regulates the strength of neocortical layer 2/3 synaptic input to layer 5. Neural Dev 9:7
Wilke, Scott A; Antonios, Joseph K; Bushong, Eric A et al. (2013) Deconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapse. J Neurosci 33:507-22
de Wit, Joris; O'Sullivan, Matthew L; Savas, Jeffrey N et al. (2013) Unbiased discovery of glypican as a receptor for LRRTM4 in regulating excitatory synapse development. Neuron 79:696-711
Wilke, Scott A; Hall, Benjamin J; Antonios, Joseph K et al. (2012) NeuroD2 regulates the development of hippocampal mossy fiber synapses. Neural Dev 7:9
Qiu, Zilong; Sylwestrak, Emily L; Lieberman, David N et al. (2012) The Rett syndrome protein MeCP2 regulates synaptic scaling. J Neurosci 32:989-94
O'Sullivan, Matthew L; de Wit, Joris; Savas, Jeffrey N et al. (2012) FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73:903-10
Ripley, Beth; Otto, Stefanie; Tiglio, Katie et al. (2011) Regulation of synaptic stability by AMPA receptor reverse signaling. Proc Natl Acad Sci U S A 108:367-72
Williams, Megan E; de Wit, Joris; Ghosh, Anirvan (2010) Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron 68:9-18