Little is known about intracranial aneurysm (IA) formation. We submit that specific hemodynamic conditions, not evaluated in prior aneurysm models, are critical for IA formation. Using a rabbit IA model, this project seeks to define these specific hemodynamic conditions responsible for aneurysm initiation and to identify key molecular responses in the pathological vascular remodeling that initiates aneurysms. We hypothesize that: 1) unusual hemodynamics at cerebrovascular bifurcations that is characterized by high wall shear stress (WSS) and wall shear stress gradient (WSSG) induces aneurysmal destructive remodeling, and 2) this pathological response is mediated by localized hemodynamic stimulation of nitric oxide (NO) production and matrix metalloproteinase (MMP) activity. We will evaluate the dose-dependence of this hemodynamic initiation of IAs and use computational fluid dynamics (CFD) to map the initiating hemodynamics. This will define the specific hemodynamic conditions responsible for inducing BT aneurysms, and allow subsequent experiments to examine the biological responses to IA-initiating hemodynamics that precede aneurysm formation. We will then examine hemodynamically induced changes in nitric oxide production and MMP activity during this early period of aneurysm initiation. The roles of NO and MMP in hemodynamic induction of IAs will be tested via pharmacological manipulation of these molecules.
Aim 1. Determine specific hemodynamic conditions responsible for flow-induced IA initiation.
Aim 2. Determine the role of MMPs in hemodynamic initiation of IAs.
Aim 3. Determine the role of iNOS in regulating hemodynamic initiation of IAs. Significance: IA rupture is associated with devastating consequences for patients with high mortality and morbidity. IA formation remains poorly understood. Elucidating the role of specific hemodynamics in IA initiation will pave the way for new mechanistic understandings of IA growth and possibly rupture.

Public Health Relevance

Intracranial aneurysms have catastrophic consequences with high morbidity and mortality if they rupture. What causes intracranial aneurysms to develop is unclear, but blood flow (hemodynamics) conditions play an important role. This study seeks to elucidate the specific hemodynamic and biological mechanisms involved in initiating intracranial aneurysms in order to pave the way for improved diagnostic and prognostic capabilities and the development of more effective prevention strategies and less invasive therapies.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Brain Injury and Neurovascular Pathologies Study Section (BINP)
Program Officer
Koenig, James I
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
State University of New York at Buffalo
Engineering (All Types)
Schools of Engineering
United States
Zip Code
Eller, Jorge L; Dumont, Travis M; Sorkin, Grant C et al. (2014) The Pipeline embolization device for treatment of intracranial aneurysms. Expert Rev Med Devices 11:137-50
Turk 3rd, A S; Martin, R H; Fiorella, D et al. (2014) Flow diversion versus traditional endovascular coiling therapy: design of the prospective LARGE aneurysm randomized trial. AJNR Am J Neuroradiol 35:1341-5
Liaw, Nicholas; Fox, Jennifer M Dolan; Siddiqui, Adnan H et al. (2014) Endothelial nitric oxide synthase and superoxide mediate hemodynamic initiation of intracranial aneurysms. PLoS One 9:e101721
Dumont, Travis M; Mokin, Maxim; Wach, Michael M et al. (2014) Understanding risk factors for perioperative ischemic events with carotid stenting: is patient age over 80 years or is unfavorable arch anatomy to blame? J Neurointerv Surg 6:219-24
Tutino, Vincent M; Mandelbaum, Max; Choi, Hoon et al. (2014) Aneurysmal remodeling in the circle of Willis after carotid occlusion in an experimental model. J Cereb Blood Flow Metab 34:415-24
Sorkin, Grant C; Dumont, Travis M; Wach, Michael M et al. (2014) Carotid artery stenting outcomes: do they correlate with antiplatelet response assays? J Neurointerv Surg 6:373-8
Xiang, J; Siddiqui, A H; Meng, H (2014) The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms. J Biomech 47:3882-90
Tawk, Rabih G; Binning, Mandy J; Thomas, Justin M et al. (2014) Transciliary supraorbital approach (eyebrow approach) for resection of retrochiasmatic craniopharyngiomas: an alternative approach, case series, and literature review. J Neurol Surg A Cent Eur Neurosurg 75:354-64
Ma, D; Xiang, J; Choi, H et al. (2014) Enhanced aneurysmal flow diversion using a dynamic push-pull technique: an experimental and modeling study. AJNR Am J Neuroradiol 35:1779-85
Goyal, Mayank; Almekhlafi, Mohammed; Menon, Bijoy et al. (2014) Challenges of acute endovascular stroke trials. Stroke 45:3116-22

Showing the most recent 10 out of 45 publications