Chronic pain affects tens of millions of Americans and its inadequate treatment creates an enormous burden on our health care system, its patients and its clinicians. Gaining a better understanding of the basic mechanisms driving chronic pain has the potential to lead to therapeutics that can reverse chronic pain as opposed to currently available palliative treatments. Changes in gene expression in peripheral sensory neurons link initial injury to the development of chronic pain. Work in this area has focused on transcriptionally-mediated events. However, sensory neurons are large cells with peripheral terminals at great distances from the site of transcription, the nucleus. Hence, control of protein translation potentially affords these cells a mechanism to rapidly change gene expression in direct response to local signaling factors. We have demonstrated, through the previous period of grant support, that translation control indeed plays a vital role in changes in gene expression driving the transition to chronic pain. This discovery creates an important therapeutic opportunity because translation is controlled by a number of kinases (e.g. MNK1/2) which signal to proteins (e.g. eIF4E) involved in the rate-limited step of protein synthesis, translation initiation. We wil test the central hypothesis that translation control signaling is crucial for changes in nociceptor excitability after exposure to pain promoting compounds and for mediating phenotypic changes in nociceptors during the transition to chronic pain. Specifically we will examine a novel signaling pathway for pain plasticity: MNK1/2 kinase phosphorylation of eIF4E. Our hypotheses will be tested through 3 specific aims: 1) MNK1/2 signaling to eIF4E as a key signaling hub for behavioral plasticity leading to chronic pain, 2) MNK1/2 signaling to eIF4E as a critical step for plasticity in nociceptor excitability and 3) BDNF as a key translational target of MNK1/2 - eIF4E signaling in nociceptor phenotypic changes that promote chronic pain. The outcome of the completion of these aims will be an in-depth understanding of how translation regulation promotes nociceptive plasticity, the identification of a specific mechanism (eIF4E phosphorylation) and target (MNK1/2 kinase) as a potential pain therapeutic and novel regulatory mechanisms of BDNF translation and the role of this process in the transition to chronic pain.

Public Health Relevance

Pain is the most prominent reason that Americans seek medical attention and the lifetime population incidence of chronic pain in this country is 33%. This creates an enormous burden on medical care systems and society and leads to human suffering. The goal of our research is to further understand mechanisms driving chronic pain and develop therapeutic strategies to treat and potentially reverse pain based on these molecular insights.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IFCN-B (03))
Program Officer
Oshinsky, Michael L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas-Dallas
Schools of Allied Health Profes
United States
Zip Code
Moy, Jamie K; Khoutorsky, Arkady; Asiedu, Marina N et al. (2017) The MNK-eIF4E Signaling Axis Contributes to Injury-Induced Nociceptive Plasticity and the Development of Chronic Pain. J Neurosci 37:7481-7499
Sahn, James J; Mejia, Galo L; Ray, Pradipta R et al. (2017) Sigma 2 Receptor/Tmem97 Agonists Produce Long Lasting Antineuropathic Pain Effects in Mice. ACS Chem Neurosci 8:1801-1811
Li, Xiuying; Che, Zifan; Mazhar, Khadijah et al. (2017) Ultrafast Near-Infrared Light-triggered Intracellular Uncaging to Probe Cell Signaling. Adv Funct Mater 27:
Burton, Michael D; Tillu, Dipti V; Mazhar, Khadijah et al. (2017) Pharmacological activation of AMPK inhibits incision-evoked mechanical hypersensitivity and the development of hyperalgesic priming in mice. Neuroscience 359:119-129
Hanamura, Kenji; Washburn, Halley R; Sheffler-Collins, Sean I et al. (2017) Extracellular phosphorylation of a receptor tyrosine kinase controls synaptic localization of NMDA receptors and regulates pathological pain. PLoS Biol 15:e2002457
Park, Sung Il; Shin, Gunchul; McCall, Jordan G et al. (2016) Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc Natl Acad Sci U S A 113:E8169-E8177
Asiedu, Marina N; Dussor, Gregory; Price, Theodore J (2016) Targeting AMPK for the Alleviation of Pathological Pain. EXS 107:257-285
Burgos-Vega, Carolina C; Quigley, Lilyana D; Avona, Amanda et al. (2016) Dural stimulation in rats causes brain-derived neurotrophic factor-dependent priming to subthreshold stimuli including a migraine trigger. Pain 157:2722-2730
Pember, Stephen O; Mejia, Galo L; Price, Theodore J et al. (2016) Piperidinyl thiazole isoxazolines: A new series of highly potent, slowly reversible FAAH inhibitors with analgesic properties. Bioorg Med Chem Lett 26:2965-2973
Davidson, Steve; Golden, Judith P; Copits, Bryan A et al. (2016) Group II mGluRs suppress hyperexcitability in mouse and human nociceptors. Pain 157:2081-8

Showing the most recent 10 out of 56 publications