Dendritic spines are small (0.1 - 0.01 femtolitter) excitatory postsynaptic compartments emanating from the dendritic surface. Ca2+ influx into spines activates signaling networks consisting of hundreds of species of proteins that induce diverse forms of synaptic plasticity. Rho GTPase proteins, particularly Rac1, RhoA and Cdc42, are critical components of these signaling networks, and their activation plays an important role in regulating the morphology and function of dendritic spines. Consistent with the important role of Rho signaling in spine morphology and function, mutations in Rho signaling pathways are associated with many forms of mental retardation and autism. In this study, we will develop a technique to measure Rho signaling in single dendritic spines while they undergo morphological and functional plasticity in brain slices. To do so, we will combine 2-photon fluorescence lifetime imaging microscopy (2pFLIM) with fluorescent resonance energy transfer-based Rho activity sensors extensively optimized for 2pFLIM. Our preliminary data demonstrates that the activity of Cdc42 is restricted to spines undergoing synaptic plasticity, while Rac1 and RhoA activation spreads along dendrites over ~10 5m and invades neighboring spines. These results suggest that each Rho signaling pathway functions on a different length scale. We will study the mechanisms and roles of the spatial spreading of Rho GTPase proteins by measuring and perturbing the spatiotemporal dynamics of Rho signaling.
The specific aims of this project are to 1) establish techniques to image Rho signaling in individual spines, 2) elucidate the mechanisms and roles of spatiotemporal dynamics of Rho during synaptic plasticity, and 3) identify signaling pathways connecting calcium with Rho GTPase activation and synaptic plasticity. This study will illuminate the molecular mechanisms of morphological and functional plasticity of dendritic spines, and will provide insights into mental diseases caused by mutations in Rho signaling pathways.

Public Health Relevance

The shape and function of synapses are regulated by signaling mediated by Rho proteins. Many forms of mental retardation and autism are caused by abnormal Rho signaling. This project will develop a novel technique to measure the activity of Rho proteins in single synapses to elucidate the mechanisms linking the activity of Rho proteins and the morphology and function of synapses. This will facilitate understanding of mental retardation and autism.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-ETTN-G (52))
Program Officer
Talley, Edmund M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Max Planck Florida Corporation
United States
Zip Code
Hedrick, Nathan G; Harward, Stephen C; Hall, Charles E et al. (2016) Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity. Nature 538:104-108
Harward, Stephen C; Hedrick, Nathan G; Hall, Charles E et al. (2016) Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 538:99-103
Nishiyama, Jun; Yasuda, Ryohei (2015) Biochemical Computation for Spine Structural Plasticity. Neuron 87:63-75
Kim, Il Hwan; Wang, Hong; Soderling, Scott H et al. (2014) Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall. Elife 3:
Oliveira, Ana F; Yasuda, Ryohei (2014) Neurofibromin is the major ras inactivator in dendritic spines. J Neurosci 34:776-83
Colgan, Lesley A; Yasuda, Ryohei (2014) Plasticity of dendritic spines: subcompartmentalization of signaling. Annu Rev Physiol 76:365-85
Zhai, Shenyu; Ark, Eugene D; Parra-Bueno, Paula et al. (2013) Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342:1107-11
Oliveira, Ana F; Yasuda, Ryohei (2013) An improved Ras sensor for highly sensitive and quantitative FRET-FLIM imaging. PLoS One 8:e52874
Kim, Il Hwan; Racz, Bence; Wang, Hong et al. (2013) Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. J Neurosci 33:6081-92
Szatmari, Erzsebet M; Oliveira, Ana F; Sumner, Elizabeth J et al. (2013) Centaurin-?1-Ras-Elk-1 signaling at mitochondria mediates ?-amyloid-induced synaptic dysfunction. J Neurosci 33:5367-74

Showing the most recent 10 out of 19 publications