Migraine, perhaps the most common neurological condition, is a debilitating disorder characterized by episodic pain and other symptoms (i.e., nausea, vomiting, photophobia or phonophobia with or without aura). While the pathophysiology of this disorder remains unknown, an important theory suggests that migraine may occur as a consequence of cortical spreading depression (CSD). Migraine, and perhaps CSD events, may be precipitated by a variety of """"""""triggers"""""""" including stress and provocative chemical agents such as donors of nitric oxide (NO). Migraine is often treated with triptan drugs which are effective in some patients but which are also associated with an increase in the incidence of headache frequency, i.e., medication overuse headache. We reasoned that transformation of episodic headaches into MOH, and perhaps CM, by triptans may result, in part, from medication-induced neural adaptations that enhance responses to stimuli that can """"""""trigger"""""""" migraine attacks (i.e., """"""""migraine triggers""""""""). For this reason, we hypothesize that a period of triptan exposure results in persistent hypersensitivity to migraine triggers that are associated with increased cortical spreading depression (CSD) events and activation of primary afferent fibers that innervate the dura.
Three specific aims test this hypothesis. First, are enhanced behavioral and neurochemical responses observed in rats pre-exposed to a period of triptan treatment accompanied by spontaneous (i.e., non-evoked) or increased CSD events following an evoking stimulus? (Aim 1);second, do the persistent pronociceptive changes elicited in dural primary afferent neurons by triptans result in subsequent activation and potentially increased excitability of dural afferent neurons in response to stimuli known to promote migraine attack in humans or after a CSD event? (Aim 2);and third, what are the roles of nNOS and CGRP in promoting enhanced sensitivity to migraine triggers, and/or CSD events and excitation of dural afferents? (Aim 3). A significant problem in preclinical efforts to study migraine mechanisms and pain is that animal models of headache generally require induction of tissue injury whereas migraineurs suffer from pain in the absence of injury (i.e., """"""""dysfunctional pain""""""""). Our approach mimics the human state by inducing neural adaptations using medications without causing tissue injury. Our goal is to use the triptan-induced sensitized state to investigate possible mechanisms underlying MOH and by which episodic pain may transform into CM. Critically, the events that may promote enhanced pain signaling following challenge of rats with latent sensitization with migraine triggers are also likely to yield insights into mechanisms relevant to pathophysiological states of underlying migraine. The data from the proposed experiments will result in mechanistic insights that can be tested clinically.

Public Health Relevance

Migraine is one of the most common neurological disorders. This condition is often treated with triptan drugs. However, overuse of these mechanisms may elicit transformation of episodic migraine to chronic migraine. The mechanisms underlying chronification of pain are not known but may be related to changes in threshold to respond to triggers of migraine. Understanding such mechanisms may give insight into underlying pathophysiology of medication overuse headache and chronic migraine and of migraine pathophysiology. Project Narrative: Migraine is one of the most common neurological disorders. This condition is often treated with triptan drugs. However, overuse of these mechanisms may elicit transformation of episodic migraine to chronic migraine. The mechanisms underlying chronification of pain are not known but may be related to changes in threshold to respond to triggers of migraine. Understanding such mechanisms may give insight into underlying pathophysiology of medication overuse headache and chronic migraine and of migraine pathophysiology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS069572-05
Application #
8716819
Study Section
Special Emphasis Panel (ZRG1-IFCN-E (02))
Program Officer
Porter, Linda L
Project Start
2010-09-01
Project End
2015-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$462,333
Indirect Cost
$120,605
Name
University of Arizona
Department
Pharmacology
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Xie, Jennifer Y; De Felice, Milena; Kopruszinski, Caroline M et al. (2017) Kappa opioid receptor antagonists: A possible new class of therapeutics for migraine prevention. Cephalalgia 37:780-794
Harasawa, Ichiro; Johansen, Joshua P; Fields, Howard L et al. (2016) Alterations in the rostral ventromedial medulla after the selective ablation of ?-opioid receptor expressing neurons. Pain 157:166-73
Dussor, Gregory; Yan, J; Xie, Jennifer Y et al. (2014) Targeting TRP channels for novel migraine therapeutics. ACS Chem Neurosci 5:1085-96
Green, A Laine; Gu, Pengfei; De Felice, Milena et al. (2014) Increased susceptibility to cortical spreading depression in an animal model of medication-overuse headache. Cephalalgia 34:594-604
De Felice, Milena; Eyde, Nathan; Dodick, David et al. (2013) Capturing the aversive state of cephalic pain preclinically. Ann Neurol 74:257-65
Meng, Ian D; Dodick, David; Ossipov, Michael H et al. (2011) Pathophysiology of medication overuse headache: insights and hypotheses from preclinical studies. Cephalalgia 31:851-60
De Felice, Milena; Ossipov, Michael H; Porreca, Frank (2011) Persistent medication-induced neural adaptations, descending facilitation, and medication overuse headache. Curr Opin Neurol 24:193-6
Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei et al. (2011) Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache. Pain 152:106-13
Maddaford, Shawn; Renton, Paul; Speed, Joanne et al. (2011) 1,6-Disubstituted indole derivatives as selective human neuronal nitric oxide synthase inhibitors. Bioorg Med Chem Lett 21:5234-8
Ramnauth, Jailall; Speed, Joanne; Maddaford, Shawn P et al. (2011) Design, synthesis, and biological evaluation of 3,4-dihydroquinolin-2(1H)-one and 1,2,3,4-tetrahydroquinoline-based selective human neuronal nitric oxide synthase (nNOS) inhibitors. J Med Chem 54:5562-75

Showing the most recent 10 out of 16 publications