Uncovering molecular mechanisms that underlie pain hypersensitivity in neuropathic pain may allow development of novel therapeutic strategies for treating this disorder. Non-coding RNAs that have been identified in mammalian cells regulate gene expression. Their expression is associated with the development of neurological diseases, but how non-coding RNA is causally linked to the diseases is unknown. We recently indentified a large, native, full-length non-coding RNA (2,574 nt) that is complementary to voltage-gated K+ channel (Kv) 1.2 mRNA in the dorsal root ganglion (DRG). Our data indicate that this Kv1.2 antisense (AS) RNA might be up-regulated via the activation of MZF-1 transcription factor in the injured DRG after peripheral nerve injury. Blocking this up-regulation might attenuate the induction of neuropathic pain. These preliminary findings suggest that DRG Kv1.2 AS RNA participates in the molecular mechanisms that underlie neuropathic pain. This proposal will further characterize native Kv1.2 AS RNA in the DRG and determine whether and how this AS RNA contributes to neuropathic pain.
In Specific Aim 1, we will examine the expression and distribution of Kv1.2 AS RNA in the DRG and define cytochemical characteristics of Kv1.2 AS RNA-containing DRG neurons in normal rats.
In Specific Aim 2, we will examine whether peripheral nerve injury produces an increase in expression of Kv1.2 AS RNA and its transcription factor MZF-1 in the DRG. Furthermore, we will examine whether Kv1.2 AS RNA is up- regulated as a result of MZF-1 binding to the consensus sequence on the Kv1.2 AS gene promoter in the injured DRG after peripheral nerve injury.
In Specific Aim 3, we will use a virally mediated gene transfer strategy to determine whether over-expression of Kv1.2 AS RNA specifically and selectively reduces expression of Kv1.2 mRNA and protein and total Kv current density in DRG neurons, increases DRG neuronal excitability, and leads to major symptoms of neuropathic pain in rats. We will also examine whether blocking nerve injury-induced up-regulation of Kv1.2 AS RNA in rats reverses nerve injury-induced reductions in DRG Kv1.2 expression and total Kv current density and attenuates nerve injury-induced abnormal DRG neuronal spontaneous activity and pain hypersensitivity. The proposed studies will provide major conceptual advances to our understanding of the molecular mechanism of neuropathic pain and might open a door for developing new strategies for treating neuropathic pain.

Public Health Relevance

Neuropathic pain is poorly managed by standard drug therapy. Understanding mechanisms of pain hypersensitivity in neuropathic pain is important to improving clinical treatment and developing novel therapeutic strategies. The proposed studies will test novel hypothesis that peripheral nerve injury up- regulates the endogenous antisense RNA transcript of the Kv1.2 potassium channel in the injured dorsal root ganglion and that this up-regulation may contribute to the development and maintenance of neuropathic pain. The proposed studies may provide new strategies for clinical intervention of neuropathic pain.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS072206-05
Application #
8687754
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Oshinsky, Michael L
Project Start
2013-07-03
Project End
2015-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Rutgers University
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
City
Newark
State
NJ
Country
United States
Zip Code
07103
Li, Q B; Chang, L; Ye, F et al. (2018) Role of spinal cyclooxygenase-2 and prostaglandin E2 in fentanyl-induced hyperalgesia in rats. Br J Anaesth 120:827-835
Xu, Bo; Cao, Jing; Zhang, Jun et al. (2017) Role of MicroRNA-143 in Nerve Injury-Induced Upregulation of Dnmt3a Expression in Primary Sensory Neurons. Front Mol Neurosci 10:350
Zhao, Jian-Yuan; Liang, Lingli; Gu, Xiyao et al. (2017) DNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in primary afferent neurons. Nat Commun 8:14712
Sun, Linlin; Zhao, Jian-Yuan; Gu, Xiyao et al. (2017) Nerve injury-induced epigenetic silencing of opioid receptors controlled by DNMT3a in primary afferent neurons. Pain 158:1153-1165
Wang, Shaocheng; Li, Qixian; Fang, Hongwei et al. (2017) Spinal cord stimulation versus other therapies in patients with Refractory Angina: A meta-analysis. Transl Perioper Pain Med 2:31-41
Li, Zhisong; Mao, Yuanyuan; Liang, Lingli et al. (2017) The transcription factor C/EBP? in the dorsal root ganglion contributes to peripheral nerve trauma-induced nociceptive hypersensitivity. Sci Signal 10:
Zhang, Jun; Liang, Lingli; Miao, Xuerong et al. (2016) Contribution of the Suppressor of Variegation 3-9 Homolog 1 in Dorsal Root Ganglia and Spinal Cord Dorsal Horn to Nerve Injury-induced Nociceptive Hypersensitivity. Anesthesiology 125:765-78
Nwagwu, Chibueze D; Sarris, Christina; Tao, Yuan-Xiang et al. (2016) Biomarkers for Chronic Neuropathic Pain and their Potential Application in Spinal Cord Stimulation: A Review. Transl Perioper Pain Med 1:33-38
Sun, Linlin; Lutz, Brianna Marie; Tao, Yuan-Xiang (2016) The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Perioper Pain Med 1:22-33
Cui, Lian; Miao, Xuerong; Liang, Lingli et al. (2016) Identification of Early RET+ Deep Dorsal Spinal Cord Interneurons in Gating Pain. Neuron 91:1137-1153

Showing the most recent 10 out of 35 publications