This project is dedicated to discovering ways to induce regeneration of the corticospinal tract (CST) and recovery of motor function after spinal cord injury (SCI). The CST is the pathway that is responsible for the ability to move voluntarily. Damage to the CST as a result of a spinal cord injury is the reason people are paralyzed. The present project is based on recent extraordinary discoveries that the CST can be induced to regenerate following spinal cord injury by targeting molecular pathways that control cell growth in development, specifically phosphatase and tensin inhibitor (PTEN). PTEN is responsible for shutting down the type of protein synthesis that is critical for cell growth during development. PTEN acts by blocking the mammalian target of rapamycin, (mTOR), so deletion of PTEN releases inhibition on mTOR, which in turn allows the cell to synthesize proteins that are critical for cell growth. Importantly, the same molecular pathways are also the key to allowing neurons to regenerate their axons following injury. Based on this, recent studies have shown that genetic deletion of PTEN in mice allows neurons to mount a robust regenerative response. Most critically, our studies demonstrate that when PTEN is deleted in neurons in the cerebral cortex, the neurons that give rise to the CST are able to robustly regenerate their axons after SCI. The fact that regeneration of the CST can be successfully induced provides us with an unprecedented opportunity to address a question that is central to regeneration research-whether it is possible to induce regeneration in a therapeutically-relevant time frame and whether inducing CST regeneration is enough to restore circuits of sufficient specificity to allow some degree of restoration of motor function. The project uses anatomical and physiological methods to assess the degree to which regenerated axons grow along normal tracts, to normal targets, form functional synapses, and contribute to motor function. Pre-clinical experiments will also assess whether it is possible to down-regulate PTEN in a therapeutically-relevant time frame and using non-genetic interventions.

Public Health Relevance

This project builds upon the novel discovery that axon regeneration can be induced following spinal cord injury by targeting molecular pathways that control cell growth during development. The project will assess whether it is possible to target these molecular pathways in a therapeutically relevant time frame and whether the regeneration is sufficient to restore motor function.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Clinical Neuroplasticity and Neurotransmitters Study Section (CNNT)
Program Officer
Owens, David F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
Organized Research Units
United States
Zip Code
Gutilla, Erin A; Buyukozturk, Melda M; Steward, Oswald (2016) Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice. Exp Neurol 279:27-39
Gutilla, Erin A; Steward, Oswald (2016) Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control? Neural Regen Res 11:1201-3
Willenberg, Rafer; Zukor, Katherine; Liu, Kai et al. (2016) Variable laterality of corticospinal tract axons that regenerate after spinal cord injury as a result of PTEN deletion or knock-down. J Comp Neurol 524:2654-76
Danilov, Camelia A; Steward, Oswald (2015) Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice. Exp Neurol 266:147-60
Willenberg, Rafer; Steward, Oswald (2015) Nonspecific labeling limits the utility of Cre-Lox bred CST-YFP mice for studies of corticospinal tract regeneration. J Comp Neurol 523:2665-82
Bonner, Joseph F; Steward, Oswald (2015) Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Brain Res 1619:115-23
Nielson, Jessica L; Haefeli, Jenny; Salegio, Ernesto A et al. (2015) Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury. Brain Res 1619:124-38
Lewandowski, Gail; Steward, Oswald (2014) AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury. J Neurosci 34:9951-62
Nielson, Jessica L; Guandique, Cristian F; Liu, Aiwen W et al. (2014) Development of a database for translational spinal cord injury research. J Neurotrauma 31:1789-99
Steward, Oswald; Sharp, Kelli G; Yee, Kelly Matsudaira et al. (2014) Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. J Neurosci 34:14013-21