The vast majority of excitatory synapses occur on spines, which are dynamic structures that undergo changes in size, shape, and number during development and in response to physiological stimuli such as neuronal activity and learning. The overall goal of this research project is to elucidate the molecular mechanisms that regulate dendritic spine morphogenesis. Spine development includes formation, maturation, and pruning. Although many proteins have been found to be important for spine formation, the molecular pathway controlling spine formation is not fully understood. Even less is known about the molecular mechanism regulating the later phases of spine development, especially spine pruning, which is an activity-dependent process and likely plays an important role in the refinement of synaptic connections. The gene for brain-derived neurotrophic factor (BDNF) produces two pools of mRNA, with either a short or long 3'untranslated region (3'UTR). Our recent findings show that short 3'UTR Bdnf mRNA is restricted to the soma, whereas long 3'UTR Bdnf mRNA is also transported to dendrites for local translation. This application is aimed at testing the hypothesis that BDNF synthesized in the soma and dendrites regulates formation, maturation, and pruning of spines via distinct signaling cascades and that single nucleotide polymorphisms (SNP) in the human Bdnf 3'UTR may impair localization and translation of Bdnf mRNA in dendrites, leading to spine dysmorphogenesis and cognitive impairments. These hypotheses will be tested in three specific aims.
Specific aim 1 proposes to examine the distinct roles of somatically and dendritically synthesized BDNF in spine morphogenesis in cultured rat hippocampal neurons.
Specific aim 2 proposes to elucidate the signaling cascades mediating the effects of BDNF on the formation, maturation, and pruning of spines.
Specific aim 3 proposes to determine the effects of a human SNP in the long Bdnf 3'UTR on spine morphogenesis and synaptic plasticity. Findings from these studies likely reveal novel mechanisms governing gene function and spine morphogenesis, and provide insights into the functional consequence of SNPs in non-coding sequences.

Public Health Relevance

The vast majority of excitatory synapses occur on spines, which are dynamic structures that undergo changes in size, shape, and number during development and in response to physiological stimuli such as neuronal activity and learning. Alterations in spine shape and density are associated with a number of neurological disorders, including mental retardation and neurodegenerative diseases. Thus, understanding the mechanisms underlying spine morphogenesis should provide important insight into the processes of brain development and synaptic plasticity, as well as the cause of some neurological diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS073930-01
Application #
8087264
Study Section
Neurodifferentiation, Plasticity, and Regeneration Study Section (NDPR)
Program Officer
Mamounas, Laura
Project Start
2011-06-15
Project End
2016-05-31
Budget Start
2011-06-15
Budget End
2012-05-31
Support Year
1
Fiscal Year
2011
Total Cost
$333,207
Indirect Cost
Name
Georgetown University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
049515844
City
Washington
State
DC
Country
United States
Zip Code
20057
Xu, Haifei; An, Juan Ji; Xu, Baoji (2017) Distinct cellular toxicity of two mutant huntingtin mRNA variants due to translation regulation. PLoS One 12:e0177610
Chen, Chih-Ming; Orefice, Lauren L; Chiu, Shu-Ling et al. (2017) Wnt5a is essential for hippocampal dendritic maintenance and spatial learning and memory in adult mice. Proc Natl Acad Sci U S A 114:E619-E628
Orefice, Lauren L; Shih, Chien-Cheng; Xu, Haifei et al. (2016) Control of spine maturation and pruning through proBDNF synthesized and released in dendrites. Mol Cell Neurosci 71:66-79
Xu, Baoji; Xie, Xiangyang (2016) Neurotrophic factor control of satiety and body weight. Nat Rev Neurosci 17:282-92
Xie, Keqiang; Colgan, Lesley A; Dao, Maria T et al. (2016) NF1 Is a Direct G Protein Effector Essential for Opioid Signaling to Ras in the Striatum. Curr Biol 26:2992-3003
Vanevski, Filip; Xu, Baoji (2015) HuD interacts with Bdnf mRNA and is essential for activity-induced BDNF synthesis in dendrites. PLoS One 10:e0117264
Xie, Keqiang; Masuho, Ikuo; Shih, Chien-Cheng et al. (2015) Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling. Elife 4:
Orefice, Lauren L; Waterhouse, Emily G; Partridge, John G et al. (2013) Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J Neurosci 33:11618-32
Xu, Baoji (2013) BDNF (I)rising from exercise. Cell Metab 18:612-4
Kaneko, Megumi; Xie, Yuxiang; An, Juan Ji et al. (2012) Dendritic BDNF synthesis is required for late-phase spine maturation and recovery of cortical responses following sensory deprivation. J Neurosci 32:4790-802

Showing the most recent 10 out of 12 publications