Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults and frequently becomes resistant to drug therapy, presenting an enormous social and medical problem. However, the cellular and synaptic mechanisms underlying epilepsy in the temporal lobe are poorly understood. There is substantial evidence from both humans and animal models indicating that the medial entorhinal cortex (MEC) plays critical roles in the generation and maintenance of TLE. Recently, we discovered that a major class of perisomatically projecting basket cells selectively innervate principal cells in layer II of the MEC that project outside the hippocampus, but avoid the neighboring cells that give rise to the perforant pathway to the dentate gyrus. Here we propose to test the hypothesis that there is a significant disruption of the normally highly specialized, local GABAergic control of entorhinal cortical output in TLE, and that the compromised GABAergic inhibition constitutes a key mechanism underlying hyperexcitability and spontaneous seizures in the entorhino- hippocampal network. The hypothesis will be tested in the repeated low dose kainate model of TLE during the chronic epilepsy phase, and the assessment will be carried out with paired recording electrophysiological and immunocytochemical methods, complemented by data-driven, large-scale computational modeling approaches. The experiments of this proposal are designed to specifically target cellular-synaptic mechanisms underlying TLE. It is anticipated that defining the functional consequences of experimental TLE on neurons in the MEC will help the future development of novel anti-epileptic treatment strategies.

Public Health Relevance

Many patients with temporal lobe epilepsy have repeated spontaneous seizures that cannot be controlled with existing drug therapies. Spontaneous seizures may be caused by persistently compromised inhibitory circuits that emerge after precipitating insults. The project will determine whether aberrant inhibitory regulation of the entorhino-hippocampal circuits contributes to the generation of seizures.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS074432-03
Application #
8402403
Study Section
Special Emphasis Panel (ZRG1-BDCN-C (02))
Program Officer
Whittemore, Vicky R
Project Start
2011-02-01
Project End
2016-01-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
3
Fiscal Year
2013
Total Cost
$315,171
Indirect Cost
$104,077
Name
University of California Irvine
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Lee, Sang-Hun; Marchionni, Ivan; Bezaire, Marianne et al. (2014) Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82:1129-44
Kim, Iris H; Hevezi, Peter; Varga, Csaba et al. (2014) Evidence for functional diversity between the voltage-gated proton channel Hv1 and its closest related protein HVRP1. PLoS One 9:e105926
Krook-Magnuson, Esther; Ledri, Marco; Soltesz, Ivan et al. (2014) How might novel technologies such as optogenetics lead to better treatments in epilepsy? Adv Exp Med Biol 813:319-36
Armstrong, Caren; Soltesz, Ivan (2012) Basket cell dichotomy in microcircuit function. J Physiol 590:683-94
Krook-Magnuson, Esther; Varga, Csaba; Lee, Sang-Hun et al. (2012) New dimensions of interneuronal specialization unmasked by principal cell heterogeneity. Trends Neurosci 35:175-84
Soltesz, Ivan (2011) The Brain Prize 2011: From Microcircuit Organization to Constellations of Brain Rhythms. Trends Neurosci 34:501-3