We have identified a group of ~20 neurons that can be activated on-demand using Drosophila genetics. The sleep observed during activation of these neurons meets the historical definition for identifying sleep. Our data highlight the importance of these neurons for regulating sleep. In this proposal we will use live-cell imaging and in vivo electrophysiological recording from Drosophila brains to define the properties of these neurons in the intact brain. The ability to use Drosophila genetics to induce sleep provides a unique opportunity to examine whether sleep can be used as a therapeutic for slowing or attenuating cognitive impairments associated with degenerative diseases. Thus, we will determine whether inducing sleep in Drosophila models of Parkinson's and Alzheimer's disease can offset deficits in cognitive behavior.

Public Health Relevance

Insufficient sleep and sleep disruption result in increased morbidity, mortality and may accelerate cognitive impairments during neurodegenerative disease. We propose to use genetics to functionally evaluate sleep promoting neurons during health and disease. We will determine whether sleep can mitigate or attenuate pathology in animal models of Alzheimer's and Parkinson's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS076980-03
Application #
8517844
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
He, Janet
Project Start
2011-09-01
Project End
2016-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
3
Fiscal Year
2013
Total Cost
$282,344
Indirect Cost
$58,009
Name
Washington University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Dissel, Stephane; Seugnet, Laurent; Thimgan, Matthew S et al. (2015) Differential activation of immune factors in neurons and glia contribute to individual differences in resilience/vulnerability to sleep disruption. Brain Behav Immun 47:75-85
van Alphen, Bart; Yap, Melvyn H W; Kirszenblat, Leonie et al. (2013) A dynamic deep sleep stage in Drosophila. J Neurosci 33:6917-27