Pre-motor Neural Circuits for Exploratory Movement Abstract Movements performed by animals in order to explore external objects are called "exploratory movements". Humans use delicate and complex movements of fingers/fingertips to discern the texture, shape and other physical properties of objects, and to manipulate tools. Rodents explore their physical environment through rhythmic sweeping of their vibrissae ("whisking"), and thus serve as a major model for studying neural circuits controlling exploratory touch movements. The final common control of the tactile vibrissae is provided by motor neurons located in the lateral facial nucleus (vFMNs). The objective of this proposal is to discover and characterize the "premotor circuitry" that directly regulates the activities of vFMNs. We will identify the "connectivity maps" of premotor neurons that provide monosynaptic input for the different vFMNs controlling vibrissa protraction and retraction. We wil also determine the "neurotransmitter phenotypes" of identified premotor neurons, and characterize the functional inputs of different premotor neurons onto vFMNs using electrophysiological and optogenetic approaches. Furthermore, we will determine how developmental changes in the vFMN premotor circuitry enable the postnatal emergence of bilaterally coordinated and often synchronized exploratory whisking behavior. Identifying the structural and functional wiring diagram of these premotor neural circuits is a critical step for investigating the generation and voluntary control f exploratory movements. Results from this study will also provide new foundations for understanding motor control of hand and finger movements in humans, and thus can help lead to the design of superior neuroprosthetics devices to restore exploratory movements following paralysis or amputation.

Public Health Relevance

This proposal uses newly developed monosynaptic rabies virus based trans-synaptic tracing methods combined with electrophysiology and optogenetics to precisely identify and characterize the premotor neural circuits that control exploratory activ touch movements in mouse. Understanding neural circuits generating and controlling active touch movements will help design better neuroprosthetics for amputated or paralyzed patients. It is also expected that results obtained from this study will lead to the discovery of neural circuits for sensorimotor integration underlying complex movements, which is relevant to treating a wider range of neurological disorders in which the sensorimotor loop is damaged.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Sensorimotor Integration Study Section (SMI)
Program Officer
Gnadt, James W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Moore, Jeffrey D; Kleinfeld, David; Wang, Fan (2014) How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci 37:370-80
Stanek 4th, Edward; Cheng, Steven; Takatoh, Jun et al. (2014) Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. Elife 3:e02511
Kleinfeld, David; DeschĂȘnes, Martin; Wang, Fan et al. (2014) More than a rhythm of life: breathing as a binder of orofacial sensation. Nat Neurosci 17:647-51
Halassa, Michael M; Chen, Zhe; Wimmer, Ralf D et al. (2014) State-dependent architecture of thalamic reticular subnetworks. Cell 158:808-21
Sakurai, Katsuyasu; Akiyama, Masahiro; Cai, Bin et al. (2013) The organization of submodality-specific touch afferent inputs in the vibrissa column. Cell Rep 5:87-98
Nelson, Anders; Schneider, David M; Takatoh, Jun et al. (2013) A circuit for motor cortical modulation of auditory cortical activity. J Neurosci 33:14342-53