Therapeutic advances in vascular disease may have far-reaching public benefits. Bone morphogenetic proteins (BMPs) are emerging as essential regulators of the vasculature, important in disorders such as arteriovenous malformations (AVMs). Previous studies have shown that BMP-4 and Matrix Gla Protein (MGP), a BMP antagonist, regulate the expression of the activin-like kinase receptor 1 (ALK1), essential in angiogenesis. Stimulation of ALK1 by its ligand BMP-9 then regulates endothelial proliferation and maturation. Our preliminary data show that ALK1 signaling is instrumental in regulating Notch signaling, which has been associated with cerebral AVMs. The data further show that MGP deficiency enhances both BMP and Notch signaling resulting in the formation of cerebral AVMs and abnormal differentiation of vascular endothelial cells (ECs). MGP deficiency also causes the expression of stem cell markers in endothelial cells and disrupts normal lumen formation. Together, the results suggest that MGP plays a critical role in the crosstalk between BMP and Notch signaling during vascular development. We hypothesize that MGP helps maintain the balance between BMP and Notch signaling, which directs normal vascularization, and that elevated BMP signaling enhances Notch signaling and leads to AVMs. We further hypothesize that a limitation of Notch signaling would reduce cerebral AVMs in MGP deficiency, in part by limiting stem cell characteristics in vascular cells and abnormal lumen formation.
Specific Aim 1 will test the effects of MGP on the interactions between BMP signaling and Notch signaling during EC differentiation in vitro and in vivo.
Specific Aim 2 will determine if a reducton in Notch signaling compensates for MGP deficiency and limits cerebral AVMs by breeding the MGP deficient mice with mice deficient in Notch ligands Jag1 or Jag2. We predict that lower levels of Notch ligands will limit the cerebral AVMs due to MGP deficiency.
Specific Aim 3 will determine the role of MGP in regulating endothelial stem cell characteristics and vascular lumen formation as part of the formation of AVMs using MGP depletion in vitro and lineage tracing in vivo. If successful, the obtained information may translate into strategies for using BMP and Notch inhibitors in the treatment of cerebral AVMs.

Public Health Relevance

Our studies are relevant to the diagnosis and treatment of diseased vessels in the brain, including co-called arteriovenous malformation and hereditary hemorrhagic telangiectasia, a genetic disorder. This study focuses on factors referred to as bone morphogenetic proteins and Notch, and how they communicate with each other to regulate the formation of the vessel lining and the vessel lumen. Understanding how these factors work may lead to new strategies for prevention and treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS079353-04
Application #
8845268
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Koenig, James I
Project Start
2012-06-01
Project End
2016-05-31
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
4
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Boström, Kristina I; Yao, Jiayi; Wu, Xiuju et al. (2018) Endothelial Cells May Have Tissue-Specific Origins. J Cell Biol Histol 1:
Jumabay, Medet; Zhumabai, Jiayinaguli; Mansurov, Nurlan et al. (2018) Combined effects of bone morphogenetic protein 10 and crossveinless-2 on cardiomyocyte differentiation in mouse adipocyte-derived stem cells. J Cell Physiol 233:1812-1822
Yao, Jiayi; Guihard, Pierre J; Wu, Xiuju et al. (2017) Vascular endothelium plays a key role in directing pulmonary epithelial cell differentiation. J Cell Biol 216:3369-3385
Guihard, Pierre J; Yao, Jiayi; Blazquez-Medela, Ana M et al. (2016) Endothelial-Mesenchymal Transition in Vascular Calcification of Ins2Akita/+ Mice. PLoS One 11:e0167936
Boström, Kristina I; Yao, Jiayi; Guihard, Pierre J et al. (2016) Endothelial-mesenchymal transition in atherosclerotic lesion calcification. Atherosclerosis 253:124-127
Yao, Jiayi; Guihard, Pierre J; Blazquez-Medela, Ana M et al. (2016) Matrix Gla protein regulates differentiation of endothelial cells derived from mouse embryonic stem cells. Angiogenesis 19:1-7
Boström, Kristina I; Guihard, Pierre; Blazquez Medela, Ana M et al. (2015) Matrix Gla protein limits pulmonary arteriovenous malformations in ALK1 deficiency. Eur Respir J 45:849-52
Blazquez-Medela, Ana M; Guihard, Pierre J; Yao, Jiayi et al. (2015) ABCC6 deficiency is associated with activation of BMP signaling in liver and kidney. FEBS Open Bio 5:257-63
Yao, Jiayi; Guihard, Pierre J; Blazquez-Medela, Ana M et al. (2015) Serine Protease Activation Essential for Endothelial-Mesenchymal Transition in Vascular Calcification. Circ Res 117:758-69
Jumabay, Medet; Abdmaulen, Raushan; Ly, Albert et al. (2014) Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem Cells Transl Med 3:161-71

Showing the most recent 10 out of 16 publications