High grade gliomas are uniformly lethal, and resistant to surgery, chemotherapy and radiotherapy. The precise cellular and molecular mechanisms by which glioma cells disperse through the brain and grow to form macroscopic symptomatic tumor masses remains poorly understood. Herein we propose to test novel cellular, molecular and mechanistic hypotheses concerning glioma growth, and how to translate this knowledge into new anti-glioma therapeutics. Preliminary work from my laboratory, using confocal, electron and multiphoton microscopy has shown that glioma cells and human glioma stem cells disperse through the brain in vivo by traveling preferentially along the perivascular compartment, a potential migration network surrounding the brain microvasculature. As glioma cells move throughout the perivascular network they dislodge glial endfeet from blood vessels and compromise adjacent brain tissue; this is later replaced by tumor cells. We have also generated preliminary data that a glycan binding protein, galectin-1, is essential for this growth mechanism. Down regulation of galectin-1 abolishes glioma growth in the brain in vivo, without affecting growth in vitro. These new data have several clinical consequences: (i) lymph drains from the brain through the perivascular compartment; its obstruction by gliomas would contribute to glioma-induced edema; (ii) human glioma tumors grow to large size before causing symptoms; glioma cell replacement of atrophied brain tissue could explain protracted and indolent tumor growth, and the delayed changes in total brain volume; (iii) inhibition of galectin-1 could represent a novel treatment of human gliomas. This proposal will (I) test the hypothesis that rodent and human glioma cells, and glioma stem cells grow preferentially along the perivascular space; (II) test the hypothesis that galectin-1 mediates glioma perivascular invasion and growth, and that inhibition of galectin-1 can be used as a novel therapeutic strategy; and (III) test the hypothesis that inhibition of galectin-1 will enhance specific anti-glioma immune responses. By progressing from glioma pathophysiology to molecular mechanisms of glioma migration to experimental therapeutics, we aim for our work to lead to novel early phase clinical translational trials for the treatment of human gliomas. Of note, our first clinical trial for gene therapy of human gliomas is approaching the start of patient recruitment (it was approved by FDA on 4/7/11 [IND 14574] and very recently by the University of Michigan IBC and IRB). Therefore, our laboratory is in a strong and realistic position to guide our research towards the translational implementation of novel clinical trials for this currently deadly human cancer.

Public Health Relevance

High grade glioma tumors eventually kill affected patients in under 5 years post-diagnosis. Mechanisms by which glioma tumors grow throughout the brain are still poorly understood; recently we have discovered the anatomical pathways used by very early stage brain tumors to spread throughout the brain. By interfering with the molecular mechanisms used by brain tumors to spread throughout the brain we aim to stop these tumors from killing experimental animals. We aim develop this approach further into novel therapeutic strategies for the treatment of patients with GBM, and the implementation of these new therapies in early phase clinical trials.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
4R01NS082311-04
Application #
9039671
Study Section
Clinical Neuroimmunology and Brain Tumors Study Section (CNBT)
Program Officer
Fountain, Jane W
Project Start
2013-04-01
Project End
2018-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Haase, Santiago; Garcia-Fabiani, María Belén; Carney, Stephen et al. (2018) Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets 22:599-613
Kamran, Neha; Li, Youping; Sierra, Maria et al. (2018) Melanoma induced immunosuppression is mediated by hematopoietic dysregulation. Oncoimmunology 7:e1408750
Yadav, Viveka Nand; Altshuler, David; Kadiyala, Padma et al. (2018) Molecular ablation of tumor blood vessels inhibits therapeutic effects of radiation and bevacizumab. Neuro Oncol 20:1356-1367
Mendez, Flor M; Núñez, Felipe J; Zorrilla-Veloz, Rocío I et al. (2018) Native Chromatin Immunoprecipitation Using Murine Brain Tumor Neurospheres. J Vis Exp :
Kamran, Neha; Alghamri, Mahmoud S; Nunez, Felipe J et al. (2018) Current state and future prospects of immunotherapy for glioma. Immunotherapy 10:317-339
Lowenstein, Pedro R; Castro, Maria G (2018) Evolutionary basis of a new gene- and immune-therapeutic approach for the treatment of malignant brain tumors: from mice to clinical trials for glioma patients. Clin Immunol 189:43-51
Kamran, Neha; Chandran, Mayuri; Lowenstein, Pedro R et al. (2018) Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy. Clin Immunol 189:34-42
Chandran, Mayuri; Candolfi, Marianela; Shah, Diana et al. (2017) Single vs. combination immunotherapeutic strategies for glioma. Expert Opin Biol Ther 17:543-554
Kamran, Neha; Kadiyala, Padma; Saxena, Meghna et al. (2017) Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy. Mol Ther 25:232-248
Ashley, Shanna L; Pretto, Carla D; Stier, Matthew T et al. (2017) Matrix Metalloproteinase Activity in Infections by an Encephalitic Virus, Mouse Adenovirus Type 1. J Virol 91:

Showing the most recent 10 out of 46 publications