Migraine is a debilitating episodic pain disorder for which there are no consistently effective therapeutic interventions. It is also one of the most prevalent pain disorders afflicting as many as 10% of the general adult population and 18% of women. Identification of novel approaches for the treatment of migraine is therefore highly significant. The prevailing weight of evidence indicates that the primary afferent neurons innervating the dura and dural vasculature are the source of the pain of a migraine attack. The present proposal is therefore focused on components of the dura that can influence afferent activity. These components include resident and recruited immune cells in the dura and the dural vasculature. We will also study the afferents themselves. We have proposed to exploit two unique features of migraine as a means to identify mechanisms that enable the initiation of a migraine attack. One is that stress is the most common trigger of a migraine attack. A second is that migraine attacks occur during relaxation phase after stress has ended. We propose that sympathetic post-ganglionic neurons (SPGN) in the dura serve as a link between stress and migraine because they are a critical component of the stress response system, the dura is heavily innervated by SPGN terminals, and all three dural components to be studied are regulated by mediators released from SPGN terminals. Finally, we also propose that sex is a critical factor that influences the link between stress and migraine because of the higher prevalence of migraine in women and the fact that gonadal hormones, in particular estrogens co- regulate each of the dural components to be studied. Thus, the central hypothesis of this proposal is that that stress drives sex- and SPGN-dependent changes in the regulation of dural immune cells, vasculature and primary afferents, that set the stage for the initiation of a migraine attack. This hypothesis will be tested in experiments described under three specific aims. In the first, we will determine the impact of sex, SPGN innervation, and persistent stress on resident and recruited immune cells in the dura. In the second, we will determine the impact of sex and persistent stress on SPGN-dependent regulation of the dural vasculature. In the third, we will determine the impact of sex and persistent stress on SPGN-dependent changes in voltage-gated Ca2+ currents in dural afferents and dural afferent excitability. The proposed experiments will not only provide valuable insight into the neurobiology of the dura, a structure critical for the health of the brain, but suggest novel approaches for the treatment of migraine enabling the prevention an attack altogether.

Public Health Relevance

Migraine is a debilitating episodic pain disorder that continues to have a significant impact on society's health, well being and productivity both because of the large number of people who suffer from migraine (up to 8% of adult men and 18% of adult women) and because there is no known cure let alone consistently effective treatment for the disorder. We have proposed to take advantage unique features of migraine, which include a higher prevalence in women than in men and the fact that migraine attacks are triggered by stress, to identify mechanisms that enable an attack to occur in the first place. The proposed experiments will not only provide valuable insight into the neurobiology of the dura, a structure critical for the health of the brain as well as the site of the pain associated with migraine, but suggest novel approaches for the treatment of migraine enabling the prevention an attack altogether.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS083347-05
Application #
9405050
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Oshinsky, Michael L
Project Start
2014-01-15
Project End
2018-12-31
Budget Start
2018-01-01
Budget End
2018-12-31
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Biology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Yilmaz, Eser; Watkins, Simon C; Gold, Michael S (2017) Paclitaxel-induced increase in mitochondrial volume mediates dysregulation of intracellular Ca2+ in putative nociceptive glabrous skin neurons from the rat. Cell Calcium 62:16-28
Shiwarski, Daniel J; Tipton, Alycia; Giraldo, Melissa D et al. (2017) A PTEN-Regulated Checkpoint Controls Surface Delivery of ? Opioid Receptors. J Neurosci 37:3741-3752
McIlvried, Lisa A; Cruz, J Agustin; Borghesi, Lisa A et al. (2017) Sex-, stress-, and sympathetic post-ganglionic-dependent changes in identity and proportions of immune cells in the dura. Cephalalgia 37:36-48
Yilmaz, Eser; Gold, Michael S (2016) Paclitaxel-induced increase in NCX activity in subpopulations of nociceptive afferents: A protective mechanism against chemotherapy-induced peripheral neuropathy? Cell Calcium 60:25-31
Liu, Qing; Gold, Michael S (2016) Opioid-induced Loss of Local Anesthetic Potency in the Rat Sciatic Nerve. Anesthesiology 125:755-64
Saloman, Jami L; Scheff, Nicole N; Snyder, Lindsey M et al. (2016) Gi-DREADD Expression in Peripheral Nerves Produces Ligand-Dependent Analgesia, as well as Ligand-Independent Functional Changes in Sensory Neurons. J Neurosci 36:10769-10781
McIlvried, Lisa A; Borghesi, Lisa A; Gold, Michael S (2015) Sex-, Stress-, and Sympathetic Post-Ganglionic Neuron-Dependent Changes in the Expression of Pro- and Anti-Inflammatory Mediators in Rat Dural Immune Cells. Headache 55:943-57
Yilmaz, E; Gold, M S (2015) Sensory neuron subpopulation-specific dysregulation of intracellular calcium in a rat model of chemotherapy-induced peripheral neuropathy. Neuroscience 300:210-8