Mitochondrial disease is a commonly occurring inherited condition, incidence 1/5000, which can affect every organ system and thus exhibits a broad range of clinical phenotypes. The most common are neurological and neuromuscular dysfunction that manifest as neurodegeneration, seizures, ataxia, chronic progressive external opthalmoplegia (CPEO), and hypotonia. Childhood-onset mitochondrial disease most often results from recessive e mutations in the nuclear genome; however, the vast majority of cases remain without a molecular diagnosis and no effective treatments thus underscoring the critical need to identify the genetic aberrations driving these disorders. We propose a personalized functional genomics approach combining genome-wide sequencing, mitochondrial functional profiling in patient cells, and functional genomics to identify validated novel mitochondrial disease genes. We will comprehensively assess the spectrum of genetic variation contributing to childhood-onset mitochondrial encephalopathy through sequencing whole exomes in 200 cases. These cases will be selected from our cohort of over 800 fibroblast cell lines from patients that have been assessed for electron transport chain activity (ETC) and have been pre-screened and shown to be negative for known mitochondrial and nuclear gene mutations. Sequence data will be analyzed by our custom bioinformatics pipeline, AthenaVar, that annotates and prioritizes variants for functional studies. Gene causality will be determined through RNAi knock down, cDNA complementation studies and mitochondrial functional profiling in patient and rescued cells. Additionally, we have innovated a first-in-kind lentiviral vector that delivers a shRNA and cDNA which we will use to simultaneously knock down the endogenous 'healthy' copy of a gene of interest and deliver a mutant copy of the same gene into healthy cells. We will utilize this technology to test the functionality of variants of uncertain significance identified in our sequencing efforts as well as those obtained through collaborators, the BCM diagnostic laboratory, and the public domain. The power of our innovative combination of patient exome sequencing with mitochondrial functional profiling and functional genomics studies will propel this work beyond the bioinformatics stop gap that most disease gene discovery studies experience. This work will generate an unprecedented resource of primary mitochondrial disease patients with complete exome sequence data, systematic profiling of cellular mitochondrial function, and functionally-confirmed pathogenic molecular defects. The elucidation of these pathogenic genes will immediately improve the molecular diagnostic potential for children with suspected mitochondrial disease. Moreover, by identifying the pathogenic genes for primary mitochondrial encephalopathy we will empower the scientific community focused on neurological and neurodegenerative disorders, which have a more complex etiology, by delivering genes and pathways for further study of the pathogenetic mechanisms of these global health problems.

Public Health Relevance

In this proposal we will identify novel disease causing childhood-onset mitochondrial disease through a personalized medicine approach combining approach of genome-wide sequencing, mitochondrial functional profiling in patient cells, and gene rescue studies. This work will significantly advance the diagnosis and treatment of mitochondrial disease, as well as provide new insights into the mechanisms underlying the pathology of mitochondrial respiratory chain disorders and commonly occurring conditions associated with mitochondrial dysfunction such as neurological and neurodegenerative disorders.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Genetics of Health and Disease Study Section (GHD)
Program Officer
Gwinn, Katrina
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor College of Medicine
Schools of Medicine
United States
Zip Code
Besse, A; Petersen, A K; Hunter, J V et al. (2016) Personalized medicine approach confirms a milder case of ABAT deficiency. Mol Brain 9:93
Lalani, Seema R; Liu, Pengfei; Rosenfeld, Jill A et al. (2016) Recurrent Muscle Weakness with Rhabdomyolysis, Metabolic Crises, and Cardiac Arrhythmia Due to Bi-allelic TANGO2 Mutations. Am J Hum Genet 98:347-57
Thompson, Kyle; Majd, Homa; Dallabona, Christina et al. (2016) Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number. Am J Hum Genet 99:860-876
Besse, Arnaud; Wu, Ping; Bruni, Francesco et al. (2015) The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab 21:417-27
Stiles, Ashlee R; Ferdinandusse, Sacha; Besse, Arnaud et al. (2015) Successful diagnosis of HIBCH deficiency from exome sequencing and positive retrospective analysis of newborn screening cards in two siblings presenting with Leigh's disease. Mol Genet Metab 115:161-7
Appadurai, Vivek; DeBarber, Andrea; Chiang, Pei-Wen et al. (2015) Apparent underdiagnosis of Cerebrotendinous Xanthomatosis revealed by analysis of ~60,000 human exomes. Mol Genet Metab 116:298-304
Oláhová, Monika; Hardy, Steven A; Hall, Julie et al. (2015) LRPPRC mutations cause early-onset multisystem mitochondrial disease outside of the French-Canadian population. Brain 138:3503-19
Falk, Marni J; Shen, Lishuang; Gonzalez, Michael et al. (2015) Mitochondrial Disease Sequence Data Resource (MSeqDR): a global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Mol Genet Metab 114:388-96
Huemer, Martina; Karall, Daniela; Schossig, Anna et al. (2015) Clinical, morphological, biochemical, imaging and outcome parameters in 21 individuals with mitochondrial maintenance defect related to FBXL4 mutations. J Inherit Metab Dis 38:905-14