Temporal lobe epilepsy (TLE) is a prevalent, often drug resistant form of acquired epilepsy that frequently presents with co-morbidities such as cognitive dysfunction. Oxidative stress has been implicated in various neurological diseases including experimental models of TLE. However, whether oxidative stress contributes to chronic seizures and/or cognitive decline in TLE is unknown. Isoketals (IsoKs) and neuroketals (NeuroKs) are highly reactive gamma-ketoaldehydes (?KAs) formed via the non-enzymatic, free radical catalyzed, peroxidation of arachidonic acid and docosahexaenoic acid, respectively which are highly enriched in brain. ?KAs rapidly and irreversibly adduct to lysine residues and readily crosslink proteins which can lead to cell dysfunction. Elevated IsoKs in plasma and tissues occur in pathological conditions including Alzheimer's disease, atherosclerosis, and inflammation. Pharmacological scavenging of ?KAs has been shown to markedly inhibit cognitive impairment in humanized apoE4 mice, an animal model of Alzheimer's disease. The goals of this project are to 1) determine whether IsoK and/or NeuroK adduct formation occurs during epileptogenesis, 2) Identify candidate hippocampal proteins adducted by IsoKs/NeuroKs using mass spectrometry during epileptogenesis, 3) determine if a pharmacological scavenger of ?KAs, salicylamine (SA) can inhibit cognitive decline and/or chronic seizures associated with epileptogenesis and 4) determine if SA can inhibit neuronal death and/or reactive gliosis associated with epileptogenesis. Collectively, this project can identify a novel role of ?KAs as mediators of oxidative stress in chronic epilepsy and/or cognitive impairment associated with TLE and provides a therapeutic approach for its treatment.

Public Health Relevance

If successful, the studies proposed herein have the potential to elucidate a novel mechanism of acquired epilepsy and associated cognitive dysfunction. The proposal can provide a therapeutic avenue to prevent learning and memory deficits associated with the epilepsies. Additionally, studies will determine if the therapeutic is antiepileptogenic and/or neuroprotective.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Clinical Neuroplasticity and Neurotransmitters Study Section (CNNT)
Program Officer
Whittemore, Vicky R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Schools of Pharmacy
United States
Zip Code
Pearson, Jennifer N; Schulz, Kalynn M; Patel, Manisha (2014) Specific alterations in the performance of learning and memory tasks in models of chemoconvulsant-induced status epilepticus. Epilepsy Res 108:1032-40
Gano, Lindsey B; Patel, Manisha; Rho, Jong M (2014) Ketogenic diets, mitochondria, and neurological diseases. J Lipid Res 55:2211-28