Studies performed in rats, mice, non-human primates, and human patients have demonstrated that the hippocampus, a structure within the temporal lobe, plays a critical role in learning and memory, and damage to this structure can result in profound impairments. As this basic cognitive function is critical for day-to-day activities, learning and memory dysfunction makes it difficult to hold a job, manage one's finances, and plan daily activities. These problems severely compromise the quality of life for persons with traumatic brain injury, can hamper the effectiveness of rehabilitation, and hinder a return to an independent lifestyle. Using experimental models of brain injury, a number of investigators including us have shown that traumatic brain injury causes hippocampal cell death and dysfunction that underlies learning and memory deficits. Through a series of experimentats, we have identified two compounds that are capable of increasing the expression of cytoprotective genes, which are endogenous to a number of cell types including neurons and are activated by the transcription factor Nrf2. Our working hypothesis is that post-TBI administration of these newly identified compounds will reduce secondary pathologies and improve learning and memory by increasing the expression of Nrf2-driven genes. We will use a combination of biochemical, molecular, genetic and behavioral tests to examine if post-injury administration of these compounds can decrease blood-brain barrier permeability, offer neuroprotection, and improve learning and memory. If successful, the results from this mechanism-based study may pave the way for clinical testing in patients who have sustained a traumatic brain injury.

Public Health Relevance

Learning and memory impairments are common consequences of traumatic brain injury (TBI), and can profoundly influence quality of life. Secondary damage, occurring hours to days after the injury, can contribute to lasting cognitive and behavioral problems. The present study aims to investigate the therapeutic potential of two compounds for their capacity to alleviate secondary brain damage and improve outcome.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS087149-01
Application #
8677384
Study Section
Special Emphasis Panel (ZRG1-IFCN-T (02))
Program Officer
Hicks, Ramona R
Project Start
2014-03-01
Project End
2019-02-28
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
1
Fiscal Year
2014
Total Cost
$477,179
Indirect Cost
$149,529
Name
University of Texas Health Science Center Houston
Department
Neurosciences
Type
Schools of Medicine
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77225