The striatum is central to motivated behaviors and goal-directed actions. Neuromodulation by acetylcholine (ACh) plays a major role in regulating striatal circuits and resulting behaviors. ACh levels within the striatum are the highest in the CNS. Cholinergic transmission is involved in multiple basal ganglia based functions including the control of voluntary movement, motor and associative learning, as well as reward. Dysfunctions in acetylcholine (ACh) signaling in the striatum are associated with a variety of neurological movement disorders including Parkinson's disease, Huntington's disease, and dystonia. Identifying how these dysfunctions occur is limited by a lack of understanding of the basic mechanisms of cholinergic transmission. While both nicotinic and muscarinic receptors are expressed in the striatum, ACh does not directly evoke post-synaptic events at most synapses that can be detected with conventional electrophysiological approaches. Instead cholinergic receptors modulate striatal inputs or indirectly alter the excitability of post-synapti neurons through multistep intracellular cascades. To overcome the lack of direct readout of cholinergic transmission at muscarinic synapses, this proposal will use a novel approach to directly measure muscarinic receptor activation in medium spiny neurons of the striatum. By using the endogenous muscarinic receptor to detect the synaptic release of ACh in the striatum, this proposal will define the how muscarinic receptors in striatal output neurons encode firing patterns of cholinergic interneurons, identify the role of glutamate co-release in shaping muscarinic transmission, and identify how neuromodulatory striatonigral inputs regulate ACh output. The proposed studies are expected to be significant in that they have to potential to be the first examination of a muscarinic mediated synaptic event in the striatum driven the release of ACh from the firing of cholinergic interneurons. Insights into the specific mechanisms that regulate cholinergic transmission under physiological conditions are expected to directly lead to testable hypothesis regarding the dysregulations in this system that occur in basal ganglia based movement disorders.

Public Health Relevance

Neuromodulation by acetylcholine (ACh) plays a major role in regulating striatal circuits and downstream resulting behaviors. Alterations in cholinergic transmission in the striatum underlie numerous neurological diseases. A better understanding of the events linking acetylcholine release to its physiological actions will be significant as it has the potential to direct new strategies for the treatment of movement based neurological disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS095809-01
Application #
9075904
Study Section
Molecular Neuropharmacology and Signaling Study Section (MNPS)
Program Officer
Stewart, Randall R
Project Start
2016-01-15
Project End
2019-11-30
Budget Start
2016-01-15
Budget End
2016-11-30
Support Year
1
Fiscal Year
2016
Total Cost
$346,719
Indirect Cost
$127,969
Name
Case Western Reserve University
Department
Physiology
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Gulati, Sahil; Jin, Hui; Masuho, Ikuo et al. (2018) Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nat Commun 9:1996
Mulvey, Bernard; Bhatti, Dionnet L; Gyawali, Sandeep et al. (2018) Molecular and Functional Sex Differences of Noradrenergic Neurons in the Mouse Locus Coeruleus. Cell Rep 23:2225-2235
Marcott, Pamela F; Gong, Sheng; Donthamsetti, Prashant et al. (2018) Regional Heterogeneity of D2-Receptor Signaling in the Dorsal Striatum and Nucleus Accumbens. Neuron 98:575-587.e4
Mamaligas, Aphroditi A; Cai, Yuan; Ford, Christopher P (2016) Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission. Sci Rep 6:37834
Mamaligas, Aphroditi A; Ford, Christopher P (2016) Spontaneous Synaptic Activation of Muscarinic Receptors by Striatal Cholinergic Neuron Firing. Neuron 91:574-86
Courtney, Nicholas A; Ford, Christopher P (2016) Mechanisms of 5-HT1A receptor-mediated transmission in dorsal raphe serotonin neurons. J Physiol 594:953-65