Mathematical modeling combined with experiment has led to increased understanding of the processes that underlie HIV-1 infection and the development of improved therapies. Nevertheless HIV has not been eradicated from infected individuals. Here we propose to develop new models of HIV infection that will help inform vaccine and microbicide development. The models will incorporate both cell-mediated and humoral immune responses to infection, and aim toward understanding the roles that CD8 T cells and antibodies play in the natural defense against HIV. We will also develop stochastic models of the first events in infection in order to gain insight into the earliest processes that occur when virus first enters a person. Some of the early events in infection involve depletion of CD4+ T cells in the gut. These events will be modeled as well as the dynamics of reconstitution of CD4 T cells in the gut due to the effects of antiretroviral therapy. Lastly, models with multiple organs, such as gut, liver, lymph nodes, etc. will be used to understand how HIV distributes throughout the body and how it is cleared at different sites in the body. Infection by hepatitis C virus (HCV) and hepatitis B virus (HBV) continue to cause liver failure and hepatocellular carcinoma in infected individuals. Understanding the basis of pathogenesis and the development of potent antiviral therapies for these viruses lag behind our advances in HIV. We propose to expand our efforts in modeling HCV and HBV in vivo kinetics and the effects of antiviral therapy. In the case of HCV we propose to focus on modeling new treatments with specifically targeted anti-HCV agents, such as HCV polymerase and protease inhibitors. With these new agents the development of resistance is a great concern and we will expand models of viral kinetics and treatment that we have previously developed and validated so as to incorporate viral mutation and the development of drug resistance. We will also perform calculations aimed at understanding how prevalent pre-existing drug resistance mutations should be as well as use modeling to develop better treatment strategies, Lastly, for the case of HBV, we aim to understand why HBV infection can be cleared during primary infection in adults. We will develop models of primary HBV infection that include both non-cytolytic responses and antibody responses. We also plan to develop a new generation of on treatment models that follow not only the dynamics of HBV DNA but also HBe antigen and Hbs antigen, molecules that are used in clinical practice to access response to therapy but whose dynamics have been well studied.

Public Health Relevance

The goals of this project are to expand our understanding of viral and lymphocyte dynamics as they pertain to HIV/AIDS as well as to hepatitis B and hepatitis C virus infections. These three viruses are major public heath threats with HIV currently infecting about 33 million people world- wide, while hepatitis B and C currently infect about 300 million and 170 million people, respectively. By developing mathematical models of these infections and their treatment we aim to improve our basic understanding of disease pathogenesis and improve protocols for antiviral therapy.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Research Project (R01)
Project #
5R01RR006555-20
Application #
8132867
Study Section
AIDS Clinical Studies and Epidemiology Study Section (ACE)
Program Officer
Chang, Michael
Project Start
1991-04-19
Project End
2013-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
20
Fiscal Year
2011
Total Cost
$466,965
Indirect Cost
Name
Los Alamos National Lab
Department
Type
DUNS #
175252894
City
Los Alamos
State
NM
Country
United States
Zip Code
87545
Arazi, Arnon; Pendergraft 3rd, William F; Ribeiro, Ruy M et al. (2013) Human systems immunology: hypothesis-based modeling and unbiased data-driven approaches. Semin Immunol 25:193-200
Lau, Daryl T-Y; Negash, Amina; Chen, Jie et al. (2013) Innate immune tolerance and the role of kupffer cells in differential responses to interferon therapy among patients with HCV genotype 1 infection. Gastroenterology 144:402-413.e12
Guedj, H; Guedj, J; Negro, F et al. (2012) The impact of fibrosis and steatosis on early viral kinetics in HCV genotype 1-infected patients treated with Peg-IFN-alfa-2a and ribavirin. J Viral Hepat 19:488-96
Chaudhury, Srabanti; Perelson, Alan S; Sinitstyn, Nikolai A (2012) Spontaneous clearance of viral infections by mesoscopic fluctuations. PLoS One 7:e38549
Huang, Xiaojie; Chen, Hui; Li, Wei et al. (2012) Precise determination of time to reach viral load set point after acute HIV-1 infection. J Acquir Immune Defic Syndr 61:448-54
Chatterjee, Anushree; Guedj, Jeremie; Perelson, Alan S (2012) Mathematical modelling of HCV infection: what can it teach us in the era of direct-acting antiviral agents? Antivir Ther 17:1171-82
Bar, Katharine J; Tsao, Chun-yen; Iyer, Shilpa S et al. (2012) Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape. PLoS Pathog 8:e1002721
Giorgi, E E; Bhattacharya, T (2012) A note on two-sample tests for comparing intra-individual genetic sequence diversity between populations. Biometrics 68:1323-6; author reply 1326
Guedj, Jeremie; Dahari, Harel; Pohl, Ralf T et al. (2012) Understanding silibinin's modes of action against HCV using viral kinetic modeling. J Hepatol 56:1019-24
Nag, Ambarish; Monine, Michael; Perelson, Alan S et al. (2012) Modeling and simulation of aggregation of membrane protein LAT with molecular variability in the number of binding sites for cytosolic Grb2-SOS1-Grb2. PLoS One 7:e28758

Showing the most recent 10 out of 223 publications