The complement system is a critical part of innate immune responses that most animal viruses encounter during natural infections. While it is clear that complement (C') is an important factor in neutralization of some RNA viruses, very few mechanistic details are known about how C'regulates paramyxovirus infections. Here, we seek to fill gaps in understanding of interactions of complement (C') with the emerging highly pathogenic paramyxovirus Nipah virus (NiV). This project emerged from our recent published finding that: 1) complement is activated in vitro by pseudotypes containing the NiV F and G glycoproteins, but importantly, unlike any other paramyxovirus we have tested so far this does not result in neutralization. Our preliminary data also demonstrate that: 2) the cellular C'inhibior Factor I protease associates with the NiV F but not HN protein and 3) Factor I associated with NiV pseudotypes can inactivate C3b by cleavage into iC3b. The novelty of the second and third U findings is that no other pathogen has been reported so far to recruit Factor I as a mechanism to evade complement. In addition, support for our hypothesis would show a new function for the paramyxovirus F U U protein in evading innate immunity. U In Aim 1, we will use biochemical approaches to test the hypothesis that functional human Factor I U U interacts specifically with the NiV F protein. Work in Aim 2 will involve studies with live NiV infection under U U Biosafety Level 4 (BSL4) conditions. We will determine the extent to which live NiV activates C'in vitro and the capacity of C'to neutralize NiV infectivity. In addition to recruitment of soluble Factor , we hypothesize that NiV also captures cell surface inhibitors of C'such as CD46 and CD55. This will be tested using live NiV infection of tissue culture cells that express varying levels of inhibitors. This pilot project seeks to extend our novel findings from studies with NiV pseudotypes into live NiV under BSL-4 conditions, and to gain further supporting data for a novel mechanism of C'evasion. Both are necessary steps to establish a secure foundation for more mechanistic detailed studies with live virus and into experiments in animal models.

Public Health Relevance

There is intense interest in mechanisms that modulate the interplay between viruses and the host innate immune system. The role of complement in neutralizing emerging paramyxoviruses such as Nipah virus and how these viruses counteract complement pathways are unknown. To our knowledge, our novel finding on how Nipah virus evades neutralization has not been described for any other pathogen. Insights into inhibition of complement will have implications for virus pathogenesis and rational approaches to vaccine development.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Small Research Grants (R03)
Project #
1R03AI101675-01
Application #
8358727
Study Section
Virology - B Study Section (VIRB)
Program Officer
Cassetti, Cristina
Project Start
2012-06-01
Project End
2014-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
1
Fiscal Year
2012
Total Cost
$81,209
Indirect Cost
$26,338
Name
Wake Forest University Health Sciences
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Johnson, John B; Borisevich, Viktoriya; Rockx, Barry et al. (2015) A novel factor I activity in Nipah virus inhibits human complement pathways through cleavage of C3b. J Virol 89:989-98
Mayer, Anne E; Parks, Griffith D (2014) An AGM model for changes in complement during pregnancy: neutralization of influenza virus by serum is diminished in late third trimester. PLoS One 9:e112749
Parks, Griffith D; Alexander-Miller, Martha A (2013) Paramyxovirus activation and inhibition of innate immune responses. J Mol Biol 425:4872-92