The regeneration of damaged or diseased skeletal tissues remains a significant clinical challenge and cause for human disability and discomfort. Tissue engineering and regenerative medicine are emerging as promising strategies for treating these conditions by creating living tissue substitutes composed of cells, bioactive factors, and a biodegradable scaffold. Tissue engineering has been particularly successful in creating uniform tissues, such as skin and cartilage. However, many injuries and diseases affect the interfaces between tissues, such as the transition between bone and cartilage. New tissue engineering methods need to be developed to recapitulate the structure and function of these biphasic tissue interfaces. This project develops a method to deliver bioactive factors to cells in a precise spatial pattern within a three dimensional scaffold. As a result, stem cells seeded onto these scaffolds will be stimulated to produce different tissue types in predefined patterns. In particular, we will generate osteochondral tissues with human mesenchymal stem cells through spatially controlled gene transfer of differentiation factors. Precise spatial control will be enabled by innovative methods of biomaterial-mediated gene delivery and a microscale weaving technique for creating 3D polymer scaffolds. This work is significant to developing tissue engineering strategies for creating complex structures that recapitulate the heterogeneity and function of native tissue interfaces.

Public Health Relevance

Inadequate implant materials for healing or replacing diseased or damaged orthopedic tissues are a leading cause of pain and suffering in the United States. This work is focused on developing enhanced methods for engineering living tissues with superior biological properties and complex architectures that more closely mimic natural tissues. This will result in the ability to create living tissues that alleviate human suffering, discomfort, and disability.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Small Research Grants (R03)
Project #
5R03AR061042-02
Application #
8249080
Study Section
Special Emphasis Panel (ZAR1-EHB (M1))
Program Officer
Wang, Fei
Project Start
2011-04-01
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
2
Fiscal Year
2012
Total Cost
$76,050
Indirect Cost
$26,050
Name
Duke University
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Brunger, Jonathan M; Huynh, Nguyen P T; Guenther, Caitlin M et al. (2014) Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage. Proc Natl Acad Sci U S A 111:E798-806
Kabadi, Ami M; Gersbach, Charles A (2014) Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression. Methods 69:188-97
Glass, Katherine A; Link, Jarrett M; Brunger, Jonathan M et al. (2014) Tissue-engineered cartilage with inducible and tunable immunomodulatory properties. Biomaterials 35:5921-31
Gersbach, Charles A; Perez-Pinera, Pablo (2014) Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine. Expert Opin Ther Targets 18:835-9
Gibson, Tyler M; Gersbach, Charles A (2013) The role of single-cell analyses in understanding cell lineage commitment. Biotechnol J 8:397-407
Perez-Pinera, Pablo; Ousterout, David G; Brunger, Jonathan M et al. (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10:239-42
Perez-Pinera, Pablo; Kocak, D Dewran; Vockley, Christopher M et al. (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973-6