Human inflammatory bowel diseases (IBD's), including Crohn's disease and ulcerative colitis, are life-long, potentially debilitating intestina disorders thought to be due to overly-aggressive immune responses to normal bacteria that typically colonize the intestines. Current treatments focus on suppressing a person's immune system, which can lead to complications such as cancer and infections. The overall goal of this research is to better understand how bacteria contribute to the development of IBD's so that new medications can be developed that specifically target the intestinal microbes with minimal risk to the person. Recent data from animal models of IBD's suggest that inflammation causes intestinal bacteria to increase expression of small heat shock proteins, which in turn attenuate host inflammation. Whether anti-inflammatory properties of these heat shock proteins are also observed in other bacterial stress response systems is unknown and is the subject of these studies. Identifying and understanding the bacterial stress response systems that have anti- inflammatory properties could lead to the development of novel agents to treat IBD's by targeting master regulators of multiple bacterial stress response pathways. Preliminary data suggest that non-pathogenic E. coli in the colon also upregulate expression of acid resistance genes, gadA and gadB, during colitis and that these genes inhibit movement of the bacteria into intestinal tissues and prevent killing of E. coli by macrophages. The proposed studies aim to 1) Determine the effects of E. coli gadAB expression on the development of experimental IBD's, 2) Identify mechanisms by which E. coli gadAB expression inhibits movement of bacteria across intestinal epithelial cells, and 3) Study how E. coli GadAB promote bacterial survival within, and antigen processing by, macrophages. Interleukin-10 knockout mice, which develop spontaneous colitis when colonized by certain bacteria, will be selectively colonized with genetically altered non-pathogenic E. coli strains. In vitro studies of E. coli-infected T84 intestinal epithelial cell monolayers and bone-marrow derived macrophages will help determine mechanisms by which E. coli GadAB affects bacterial translocation and immune system activation. It is anticipated that completion of the proposed studies will: 1) identify novel functions of E. coli GadAB, 2) determine the anti-inflammatory potential of E. coli GadAB in experimental IBD's, 3) increase understanding of how IBD's develop, and 4) lead to future studies of manipulating bacterial stress responses for therapeutic purposes.

Public Health Relevance

Human inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are life-long, potentially debilitating intestinal disorders that aflict approximately 1.5 million Americans. Not only are the causes unknown, but current treatments are often ineffective or cause significant side effects. The studies in this proposal will examine how normal intestinal bacteria react to inflammation in a manner that limits progression of disease. Results of these investigations could lead to the development new diagnostic and therapeutic strategies that target intestinal microbes.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Small Research Grants (R03)
Project #
Application #
Study Section
Digestive Diseases and Nutrition C Subcommittee (DDK)
Program Officer
Podskalny, Judith M,
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Internal Medicine/Medicine
Schools of Medicine
Chapel Hill
United States
Zip Code
Goeser, Laura; Fan, Ting-Jia; Tchaptchet, Sandrine et al. (2015) Small heat-shock proteins, IbpAB, protect non-pathogenic Escherichia coli from killing by macrophage-derived reactive oxygen species. PLoS One 10:e0120249
Tchaptchet, Sandrine; Fan, Ting-Jia; Goeser, Laura et al. (2013) Inflammation-induced acid tolerance genes gadAB in luminal commensal Escherichia coli attenuate experimental colitis. Infect Immun 81:3662-71