This application requests support for studies pertaining to the principal investigator's recent finding that glucocorticoids (e.g., dexamethasone) trigger apoptosis in neural progenitor cells (NPCs) in the external granule layer of the cerebellum. Glucocorticoids induce the death of cerebellar NPCs only during a brief period when these cells are dividing and subdividing in order to produce neurons that will subsequently become granule cells in the internal granule layer and, possibly, interneurons in the molecular layer. In rodents this period occurs between postnatal days 4-10. In humans the corresponding period would last from the 20th week to the 45th week post conception. After cerebellar neurogenesis has been accomplished, the NPCs are removed by apoptosis. The signal that these NPCs use to decide when to begin to kill themselves by apoptosis is unknown. Determining what the signal might be has important implications for developmental neurobiology. The fact that 11?-hydroxysteroid dehydrogenase type 2, an enzyme that breaks down only endogenous glucocorticoids, disappears from the external granule layer of the cerebellum at the end of neurogenesis period, when NPCs undergo apoptosis, suggests that endogenous glucocorticoids might be the natural signal. Clinically, exogenous glucocorticoids (e.g., dexamethasone, betamethasone) are given to mothers, who are at high risk of giving birth prior to 32 weeks gestation, in order to induce maturation of the fetal lungs. In addition postnatal premature infants receive corticosteroids for 2-42 days either to prevent or treat chronic lung disease. Follow-up data from clinical trials suggest that infants exposed to glucocorticoids in addition to having developmental delays and smaller brains and bodies, have impairments in motor skills, motor coordination, and visualmotor integration. These data have raised concern about the relative safety of glucocorticoid exposure in the human infants. The histological work proposed in Specific Aim 1 of this application seeks to determine that glucocorticoids produce apoptosis by activating glucocorticoid receptors and that endogenous glucocorticoids are less likely to produce this toxicity than synthetic ones. Then the long-term effect of a single dose of glucocorticoids on cerebellar neuronal numbers and on motor and coordination tasks will be studied in Specific Aim 2. Results of the proposed studies could provide immediate guidance on which glucocorticoids might be less toxic in humans. In addition the findings will serve as a basis for conducting future studies aimed at more fully understanding the basic biology underlying decisions about when cells undergo apoptosis, and on finding treatments that might be more effective in preventing this drug-induced apoptosis. ? ? ?

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Small Research Grants (R03)
Project #
1R03HD055365-01
Application #
7240306
Study Section
Pediatrics Subcommittee (CHHD)
Program Officer
Vitkovic, Ljubisa
Project Start
2007-09-10
Project End
2009-08-31
Budget Start
2007-09-10
Budget End
2008-08-31
Support Year
1
Fiscal Year
2007
Total Cost
$76,000
Indirect Cost
Name
Washington University
Department
Psychiatry
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Noguchi, Kevin Kiyoshi; Cabrera, Omar HoseĆ”; Swiney, Brant S et al. (2015) Hedgehog regulates cerebellar progenitor cell and medulloblastoma apoptosis. Neurobiol Dis 83:35-43
Noguchi, Kevin K (2014) Glucocorticoid Induced Cerebellar Toxicity in the Developing Neonate: Implications for Glucocorticoid Therapy during Bronchopulmonary Dysplasia. Cells 3:36-52
Noguchi, Kevin K; Lau, Karen; Smith, Derek J et al. (2011) Glucocorticoid receptor stimulation and the regulation of neonatal cerebellar neural progenitor cell apoptosis. Neurobiol Dis 43:356-63
Noguchi, K K; Walls, K C; Wozniak, D F et al. (2008) Acute neonatal glucocorticoid exposure produces selective and rapid cerebellar neural progenitor cell apoptotic death. Cell Death Differ 15:1582-92