Squamous cell carcinomas of the skin (SCC) are a leading cause of death in organ transplant recipients and treatment of non-melanoma skin cancers, of which SCC is the second most frequent type, account for 4.5% of all Medicare cancer costs. Immune evasion in human SCC primarily results from aberrant T cell homing. Vessels in SCC lack expression of the critical cutaneous T cell homing addressin E-selectin and exclude the population of antigen-experienced skin homing T cells most capable of recognizing the tumor. Treatment of SCC with the TLR7 agonist imiquimod induces vascular E-selectin, influx of skin homing effector T cells and immunologic destruction of SCC, but associated broad-spectrum immune activation makes these medications less useful in solid organ transplant recipients in whom there is concern about engendering graft rejection. There is therefore a need to identify novel agents that can induce endothelial activation and restore appropriate T cell homing without broad, nonspecific activation of the immune system. A validated and reproducible screen to identify small molecules that induce endothelial cell E-selectin expression is described in this proposal. In the primary screen, HUVEC are grown to confluence, exposed to test compounds and immunostained for E- selectin expression. Prior similar screens have been performed to identify agents that inhibit or potentiate TNF1-induced endothelial activation but this is the first screen to search for independently acting small molecule inducers of endothelial activation. Secondary screens are in place to eliminate compounds with intrinsic optical interference and to validate findings using a second independent methodology, quantitative RT- PCR. Tertiary screens are in place to confirm activity of prioritized hit compounds on human dermal microvascular endothelial cells and to separate out compounds that do not induce dendritic cell activation, a hallmark of broad-spectrum immunologic activation. Additional biologic and preclinical screens are in place to confirm that candidate molecules function in the presence of nitric oxide, penetrate human skin, act within the SCC tumor microenvironment to induce E-selectin in vitro and enhance T cell homing in mice xenografted with human SCC tumors. We envision two classes of probes arising from these studies: one class that does not induce dendritic cell maturation and will be useful in the topical treatment of skin cancers in organ transplant recipients and a second class of compounds that induce activation of both dendritic cells and endothelial cells and would be useful in the treatment of skin cancers in non-transplanted patients and for the treatment of other internal human malignancies.

Public Health Relevance

This proposal describes a high-throughput screening assay to identify small molecules that induce E-selectin expression on human endothelial cells. The goal is to develop novel topical therapies for squamous cell carcinomas and their premalignant precursor lesions, actinic keratoses that are safe for use in normal and immunosuppressed individuals. Because impaired T cell homing is a feature of many human cancers, agents developed as a result of this work have the potential to be useful in the treatment of internal malignancies when coupled with nanoparticle delivery systems that target angiogenic tumor vessels.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Small Research Grants (R03)
Project #
1R03MH095529-01
Application #
8208916
Study Section
Special Emphasis Panel (ZRG1-BST-F (50))
Program Officer
Yao, Yong
Project Start
2011-09-09
Project End
2013-08-31
Budget Start
2011-09-09
Budget End
2012-08-31
Support Year
1
Fiscal Year
2011
Total Cost
$44,615
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Clark, Rachael A (2015) Resident memory T cells in human health and disease. Sci Transl Med 7:269rv1
Watanabe, Rei; Teague, Jessica E; Fisher, David C et al. (2014) Alemtuzumab therapy for leukemic cutaneous T-cell lymphoma: diffuse erythema as a positive predictor of complete remission. JAMA Dermatol 150:776-9
Schlapbach, Christoph; Gehad, Ahmed; Yang, Chao et al. (2014) Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci Transl Med 6:219ra8
Guenova, Emmanuella; Watanabe, Rei; Teague, Jessica E et al. (2013) TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin Cancer Res 19:3755-63
Clark, Rachael A (2013) Human skin in the game. Sci Transl Med 5:204ps13
Dowlatshahi, Mitra; Huang, Victor; Gehad, Ahmed E et al. (2013) Tumor-specific T cells in human Merkel cell carcinomas: a possible role for Tregs and T-cell exhaustion in reducing T-cell responses. J Invest Dermatol 133:1879-89
Purwar, Rahul; Schlapbach, Christoph; Xiao, Sheng et al. (2012) Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 18:1248-53
Gehad, Ahmed E; Lichtman, Michael K; Schmults, Chrysalyne D et al. (2012) Nitric oxide-producing myeloid-derived suppressor cells inhibit vascular E-selectin expression in human squamous cell carcinomas. J Invest Dermatol 132:2642-51
Seneschal, Julien; Clark, Rachael A; Gehad, Ahmed et al. (2012) Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36:873-84