Glucose metabolism is the sole source of ATP for the infectious lifecycle stage of the African trypanosome, Trypanosoma brucei. Mis-regulation of the first enzyme in the pathway, hexokinase, is toxic to the parasite. However, little is known concerning the regulatory mechanisms that modulate expression of the two genes that encode this essential enzyme activity. The goal of this application is to identify the mechanisms the parasite employs to regulate hexokinases at the gene expression and enzyme activity levels in response to distinct environmental conditions. Preliminary data indicates the trypanosome hexokinases are dynamically regulated in response to environmental glucose levels through mechanisms that include both modulation of transcript steady-state abundance and expression, as well as changes in enzyme oligomer composition. Regulation of transcript abundance in the African trypanosome occurs primarily via post-transcriptional mechanisms as a result of information encoded in gene 3'UTRs. Elements that influence hexokinase steady-state transcript abundance will be identified by monitoring transcript levels of a reporter gene construct harboring a series of mutated hexokinase 3'UTRs. The impact of these constructs on gene expression will also be considered by scoring enzyme activity of the reporter gene. At the protein level, hexokinase hexamer composition, which the parasite can alter based on growth conditions, influences enzyme activity, including sensitivity to regulatory molecules. To understand the differences in sensitivity to regulatory molecules, site-directed mutagenesis will be used to identify domains and residues required for inhibitor binding. The impact of variants that are engineered to no longer be susceptible to regulation in vitro will be assessed in vivo by expression in T. brucei. Through the characterization of regulatory mechanisms required for hexokinase expression, new means of targeting glucose metabolism, a required parasite pathway, will be identified.

Public Health Relevance

The proposed research is important to public health as mechanisms identified here will yield new targets for desperately needed therapeutic development for the African trypanosome while expanding our understanding of the fundamental cellular process of glucose sensing, topics that are supported by the mission of the NIH.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Academic Research Enhancement Awards (AREA) (R15)
Project #
Application #
Study Section
Pathogenic Eukaryotes Study Section (PTHE)
Program Officer
Mcgugan, Glen C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Clemson University
Schools of Earth Sciences/Natur
United States
Zip Code
Harris, M T; Mitchell, W G; Morris, J C (2014) Targeting protozoan parasite metabolism: glycolytic enzymes in the therapeutic crosshairs. Curr Med Chem 21:1668-78
Harris, Michael T; Walker, Dawn M; Drew, Mark E et al. (2013) Interrogating a hexokinase-selected small-molecule library for inhibitors of Plasmodium falciparum hexokinase. Antimicrob Agents Chemother 57:3731-7
Dodson, Heidi C; Morris, Meredith T; Morris, James C (2011) Glycerol 3-phosphate alters Trypanosoma brucei hexokinase activity in response to environmental change. J Biol Chem 286:33150-7
Dodson, Heidi C; Lyda, Todd A; Chambers, Jeremy W et al. (2011) Quercetin, a fluorescent bioflavanoid, inhibits Trypanosoma brucei hexokinase 1. Exp Parasitol 127:423-8
Sharlow, Elizabeth R; Lyda, Todd A; Dodson, Heidi C et al. (2010) A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity. PLoS Negl Trop Dis 4:e659
Clemmens, Clarice S; Morris, Meredith T; Lyda, Todd A et al. (2009) Trypanosoma brucei AMP-activated kinase subunit homologs influence surface molecule expression. Exp Parasitol 123:250-7
Guttormsen, Hilde-Kari; Paoletti, Lawrence C; Mansfield, Keith G et al. (2008) Rational chemical design of the carbohydrate in a glycoconjugate vaccine enhances IgM-to-IgG switching. Proc Natl Acad Sci U S A 105:5903-8
Manning, Shannon D; Ki, Moran; Marrs, Carl F et al. (2006) The frequency of genes encoding three putative group B streptococcal virulence factors among invasive and colonizing isolates. BMC Infect Dis 6:116
Seepersaud, Ravin; Needham, Rachel H V; Kim, Cathy S et al. (2006) Abundance of the delta subunit of RNA polymerase is linked to the virulence of Streptococcus agalactiae. J Bacteriol 188:2096-105
Amundson, Nicole R; Flores, Aurea E; Hillier, Sharon L et al. (2005) DNA macrorestriction analysis of nontypeable group B streptococcal isolates: clonal evolution of nontypeable and type V isolates. J Clin Microbiol 43:572-6

Showing the most recent 10 out of 32 publications