Type 2 diabetes mellitus (T2DM) is characterized by a progressive loss of b-cell function associated with obesity. There is a fundamental gap in understanding how chronic nutrient overload associated with obesity alters human b-cell function. Elucidation of nutrient-induced changes in b-cell physiology may provide insight that leads to the development of pharmaceutical approaches to preserve b-cell function and mass in susceptible obese individuals. The objective of the proposed research is to elucidate the alterations in b-cell metabolic signaling under chronic nutrient overload and their role in b-cell defects. The central hypothesis is that mammalian target of rapamycin complex 1 (mTORC1), a nutrient sensor, plays a pivotal role in two major metabolic alterations: ectopic lipid accumulatio and islet cell expansion. The hypothesis will be tested by pursuing two specific aims: 1) Elucidate the signaling pathways that lead to nutrient-mediated ectopic lipid accumulation and islet cell expansion;and 2) Determine the role of ectopic lipid accumulation, peroxynitrite, and islet cell expansion in b-cell function and survival. Under the first aim, molecular mechanisms involved in b-cell metabolic perturbations will be delineated using newly established microscopic methods and biochemical assays. The molecular mechanisms will be probed with rapamycin, an inhibitor of mTORC1;BN99, an inhibitor of acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), an enzyme that catalyzes the final step of triglyceride (TG) biosynthesis;and SR-135, a peroxynitrite decomposing catalyst. Under the second aim, the causal relationship between adaptive responses and b-cell function and survival will be investigated by measuring insulin secretion, insulin content, and b-cell apoptosis under the conditions of excess nutrients in the presence and absence of rapamycin, BN99, or SR-135. Quantitation of potentially toxic compounds such as free fatty acids, ceramide, diacylglycerol, and other intermediates of the TG esterification pathway will supplement these results. The approach is highly innovative because new microscopic methodologies for the simultaneous assessment of multi-factorial b-cell responses to metabolic perturbations are utilized. The proposed research is significant because it will have an important positive impact on the development of new targets for preventive and therapeutic interventions for T2DM in addition to fundamentally advancing the field of the human islet biology vertically.

Public Health Relevance

The proposed research is relevant to public health because understanding of the human b-cell metabolic signaling under chronic nutrient overload is expected to have an important positive impact on the development of new targets for preventive and therapeutic interventions for type 2 diabetes. Thus, the proposed research is relevant to the part of NIH's mission that pertains to developing fundamental knowledge that will help to reduce the burdens of human disability.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Academic Research Enhancement Awards (AREA) (R15)
Project #
1R15DK094142-01A1
Application #
8367328
Study Section
Special Emphasis Panel (ZRG1-EMNR-E (90))
Program Officer
Silva, Corinne M
Project Start
2012-07-01
Project End
2015-06-30
Budget Start
2012-07-01
Budget End
2015-06-30
Support Year
1
Fiscal Year
2012
Total Cost
$429,000
Indirect Cost
$129,000
Name
Southern Illinois University at Edwardsville
Department
Type
Schools of Pharmacy
DUNS #
006331342
City
Edwardsville
State
IL
Country
United States
Zip Code
62026
Knobeloch, Tracy; Abadi, Sakineh Esmaeili Mohsen; Bruns, Joseph et al. (2017) Injectable Polyethylene Glycol Hydrogel for Islet Encapsulation: an in vitro and in vivo Characterization. Biomed Phys Eng Express 3:
Johns, Michael; Esmaeili Mohsen Abadi, Sakineh; Malik, Nehal et al. (2016) Oral administration of SR-110, a peroxynitrite decomposing catalyst, enhances glucose homeostasis, insulin signaling, and islet architecture in B6D2F1 mice fed a high fat diet. Arch Biochem Biophys 596:126-37
Johns, Michael; Fyalka, Robert; Shea, Jennifer A et al. (2015) SR-135, a peroxynitrite decomposing catalyst, enhances ?-cell function and survival in B6D2F1 mice fed a high fat diet. Arch Biochem Biophys 577-578:49-59
Vernier, Stephanie; Chiu, Angela; Schober, Joseph et al. (2012) ?-cell metabolic alterations under chronic nutrient overload in rat and human islets. Islets 4:379-92