Membrane ion channels are critical for proper electrolyte transport and fluid balance. The epithelial sodium channel (ENaC) resident to the luminal plasma membrane of electrically tight epithelia, such as that lining the distal renal nephron, is, in particular, essential to regulation of sodium balance. ENaC plays an active role in the maintenance of fluid and blood pressure levels as seen with loss of function and gain of function genetic disorders, Liddle's syndrome and Pseudohypoaldosteronism type I, respectively. ENaC is a pore forming membrane protein composed of three homologous but distinct subunits. The current proposal is designed to improve our understanding of ENaC's structure features by examining the following aims:
Aim 1 : Residues and motifs that are critical for maintaining ENaC structure and function will be identified through an innovative yeast screen of ENaC function recently developed. Random mutation of targeted regions within ENaC subunits will be generated. After subsequent expression of mutated ENaC subunits in yeast we will identify a set of ENaC loss/gain in function mutations appropriate for continued studies. This sub-set of potential critical residues will be used to generate plausible hypotheses of structure-function relationships, which will be examined in a mammalian expression system using classical electrophysiology in a more mechanistic approach.
Aim 2 : Potentially critical interactions between ENaC subunits will be identified using surface plasmon resonance analysis of binding interactions. Binding of peptide fragments predicted to be essential for maintaining intersubunit interactions will be investigated first, followed by potential interacting regions identified in Specific Aim 1. The influence of immobilization environment on the observed binding interactions will be determined. We expect that quantification of binding interactions will lead to a greater understanding of critical intersubunit contacts.

Public Health Relevance

Blood pressure control has become an important factor in prolonging life. Therefore, an understanding of the factors that affect blood pressure control is critical to proper treatment. The proposed research will enhance our understanding of one of the regulators of blood pressure maintenance.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Academic Research Enhancement Awards (AREA) (R15)
Project #
1R15GM086798-01A2
Application #
8102612
Study Section
Special Emphasis Panel (ZRG1-DKUS-B (02))
Program Officer
Nie, Zhongzhen
Project Start
2011-09-01
Project End
2014-08-31
Budget Start
2011-09-01
Budget End
2014-08-31
Support Year
1
Fiscal Year
2011
Total Cost
$274,778
Indirect Cost
Name
Texas State University-San Marcos
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
074602368
City
San Marcos
State
TX
Country
United States
Zip Code
78666