The exercise intolerance of chronic heart failure (CHF) has a substantial skeletal muscle component. Repeated contractions of skeletal muscle require precise matching of O2 delivery (QO2) - to-O2 utilization (VO2). However, CHF impairs capillary hemodynamics thereby lowering the QO2/VO2 ratio and microvascular O2 pressure and compromising blood-myocyte O2 flux. Our unique intravital microscopy model (rat spinotrapezius - a muscle amenable to exercise training) facilitates direct observation of muscle microcirculation and high temporal fidelity-determination of blood-myocyte O2 flux using phosphorescence quenching during contractions. Building on the observation that CHF decreases muscle nitric oxide (NO) bioavailability and acute increases of NO restore QO2-to-VO2 matching in CHF this proposal will test the global hypothesis that multiple strategies designed to increase NO bioavailability either directly (exercise training, increased tetrahydrobiopterin (BH4, via sepiapterin)) or via modulation of reactive O2 species ( ROS, reduced O2O-, via apocynin, Gp91 ds-tat, and Tempol;reduced OHO- via deferoxamine) will improve capillary hemodynamics and blood-myocyte O2 flux. Recognizing the inflammatory component of CHF, we will investigate whether microvascular deficits in CHF can be ameliorated by reduction of inflammatory mediators IL-12 (using anakinra, IL-12 receptor antagonist) and TNF1 (using pentoxifylline). Significant strengths of this proposal include: 1. Pentoxifylline, which lowers circulating TNF-1, has proven efficacy in human CHF whereas TNF-1 blockers etanercept (recombinant TNF receptor) and infliximab (monoclonal TNF-1 antibody), for example, may worsen the condition. We will test the hypothesis that pentoxifylline improves capillary hemodynamics during contractions and assess the role of NO in this process. 2. Involvement of undergraduate and graduate students in meritorious cutting-edge scientific research, and 3. Avoiding the technical impossibility of making precise micron-level [NO] measurements in contracting muscle by determining quantitatively the extent to which NO bioavailability actually facilitates capillary hemodynamics. This will be accomplished using conditions of NOS blockade (L-NAME) and exogenous NO application (sodium nitroprusside and/or NONOate) under each experimental condition. It is anticipated that these investigations will establish a sentinel role for NO in facilitating the capillary hemodynamics and blood-myocyte O2 flux response to muscle contractions in health and reveal that deficits in NO bioavailability in CHF - evoked by dysfunction at multiple steps in the NO production pathway including BH4-induced NOS uncoupling and ROS- mediated NO destruction - are causative to CHF-induced dysfunction. The proposed studies will provide novel and important data addressing the mechanisms of muscle capillary hemodynamic dysfunction in CHF and assess the mechanistic bases for the efficacy of pentoxifylline in treating CHF patients whilst fulfilling the AREA award mandate to integrate authentic research with undergraduate/graduate student education.

Public Health Relevance

The exercise intolerance of patients suffering from chronic heart failure (CHF) is based substantially in skeletal muscle and, irrespective of left-ventricular function per se, results from a mismatching of oxygen delivery to oxygen demands in contracting muscles. Recent evidence indicates that this mismatching is the consequence of impaired capillary blood flow secondary to decreased nitric oxide bioavailability. This proposal assesses the efficacy of strategies to increase nitric oxide bioavailability to improve capillary hemodynamics, oxygen delivery/utilization matching and muscle function in CHF. One key aspect is determination of the mechanistic bases for the efficacy of pentoxifylline to treat CHF patients. Under these auspices and the AREA Award mission this proposal integrates meritorious science with opportunities for development of undergraduate and graduate student scientists.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Academic Research Enhancement Awards (AREA) (R15)
Project #
Application #
Study Section
Hypertension and Microcirculation Study Section (HM)
Program Officer
Adhikari, Bishow B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Kansas State University
Anatomy/Cell Biology
Schools of Veterinary Medicine
United States
Zip Code
Hirai, Daniel M; Copp, Steven W; Ferguson, Scott K et al. (2017) Neuronal nitric oxide synthase regulation of skeletal muscle functional hyperemia: exercise training and moderate compensated heart failure. Nitric Oxide 74:1-9
Holdsworth, Clark T; Ferguson, Scott K; Colburn, Trenton D et al. (2017) Vascular KATP channels mitigate severe muscle O2 delivery-utilization mismatch during contractions in chronic heart failure rats. Respir Physiol Neurobiol 238:33-40
Smith, Joshua R; Hageman, K Sue; Harms, Craig A et al. (2017) Effect of chronic heart failure in older rats on respiratory muscle and hindlimb blood flow during submaximal exercise. Respir Physiol Neurobiol 243:20-26
Holdsworth, Clark T; Ferguson, Scott K; Poole, David C et al. (2016) Modulation of rat skeletal muscle microvascular O2 pressure via KATP channel inhibition following the onset of contractions. Respir Physiol Neurobiol 222:48-54
Jones, Andrew M; Ferguson, Scott K; Bailey, Stephen J et al. (2016) Fiber Type-Specific Effects of Dietary Nitrate. Exerc Sport Sci Rev 44:53-60
Poole, David C; Burnley, Mark; Vanhatalo, Anni et al. (2016) Critical Power: An Important Fatigue Threshold in Exercise Physiology. Med Sci Sports Exerc 48:2320-2334
Ferguson, Scott K; Glean, Angela A; Holdsworth, Clark T et al. (2016) Skeletal Muscle Vascular Control During Exercise: Impact of Nitrite Infusion During Nitric Oxide Synthase Inhibition in Healthy Rats. J Cardiovasc Pharmacol Ther 21:201-8
Glean, Angela A; Ferguson, Scott K; Holdsworth, Clark T et al. (2015) Effects of nitrite infusion on skeletal muscle vascular control during exercise in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 309:H1354-60
Hirai, Daniel M; Musch, Timothy I; Poole, David C (2015) Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization. Am J Physiol Heart Circ Physiol 309:H1419-39
Heinonen, Ilkka; Koga, Shunsaku; Kalliokoski, Kari K et al. (2015) Heterogeneity of Muscle Blood Flow and Metabolism: Influence of Exercise, Aging, and Disease States. Exerc Sport Sci Rev 43:117-24

Showing the most recent 10 out of 26 publications