Prenatal exposure to alcohol results in a range of neurobehavioral problems including deficits in intellectual functioning, language development, attention, learning, memory, and motor skills. With regard to motor skills, we have previously assessed balance, reaction time, anticipation time, and movement speed control in children with prenatal exposure to alcohol. Results of the movement speed control study are consistent with a theoretical model of impulse-timing. Accordingly, movement end point accuracy and variability is the product of preprogramming time and force at the central nervous system (CNS) level. The mechanisms regulating motor timing in children with prenatal alcohol exposure have been examined but no information exists concerning the regulation of force. Given the teratogenic effects of alcohol exposure on the CNS, it is reasonable to assume mechanisms of force production will be negatively impacted. Utilizing information processing theory to conceptually link multiple experiments, the purpose of the proposed research is to identify the mechanisms of dysfunctional force control in children with prenatal exposure to alcohol. One experiment will determine if grip force is excessive and delayed in the alcohol-exposed child, while a second experiment examines the ability to rapidly produce force to a predetermined level. Two more experiments examine variability of isometric (without movement) and isotonic (with movement) force production in the alcohol-exposed child under conditions of varying visual feedback. Additionally, existing structural neuroimaging data will be correlated with force outcome measures for all four experiments. The relevance of the proposed work is, 1) it will provide information about the mechanisms of force regulation in children with prenatal-exposure to alcohol;2) the information will serve as a reference source against which other force data sets can be compared;3) the information will help clinicians to design therapies that will improve the ability of alcohol-exposed individuals to successfully complete everyday tasks;4) the information will assist scientists and engineers in designing robots and other artificial devices used to assist movement;5) assessing the direct link between structural CNS damage and force production will also assist in the design of rehabilitation programs.

Public Health Relevance

The results of the research program will assist therapists and clinicians in designing rehabilitation therapies designed to ameliorate motor force dysfunction in alcohol exposed children.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AA017256-01A2
Application #
7660949
Study Section
Health Services Research Review Subcommittee (AA)
Program Officer
Matochik, John A
Project Start
2009-04-20
Project End
2011-03-31
Budget Start
2009-04-20
Budget End
2010-03-31
Support Year
1
Fiscal Year
2009
Total Cost
$224,250
Indirect Cost
Name
San Diego State University
Department
Nutrition
Type
Schools of Allied Health Profes
DUNS #
073371346
City
San Diego
State
CA
Country
United States
Zip Code
92182
Taggart, Tenille C; Simmons, Roger W; Thomas, Jennifer D et al. (2017) Children with Heavy Prenatal Alcohol Exposure Exhibit Atypical Gait Characteristics. Alcohol Clin Exp Res 41:1648-1655
Simmons, Roger W; Nguyen, Tanya T; Thomas, Jennifer D et al. (2015) The Use of Open- and Closed-Loop Control During Goal-Directed Force Responses by Children with Heavy Prenatal Alcohol Exposure. Alcohol Clin Exp Res 39:1814-22
Nguyen, Tanya T; Ashrafi, Ashkan; Thomas, Jennifer D et al. (2013) Children with heavy prenatal alcohol exposure have different frequency domain signal characteristics when producing isometric force. Neurotoxicol Teratol 35:14-20
Nguyen, Tanya T; Levy, Susan S; Riley, Edward P et al. (2013) Children with heavy prenatal alcohol exposure experience reduced control of isotonic force. Alcohol Clin Exp Res 37:315-24
Simmons, Roger W; Nguyen, Tanya T; Levy, Susan S et al. (2012) Children with heavy prenatal alcohol exposure exhibit deficits when regulating isometric force. Alcohol Clin Exp Res 36:302-9
Simmons, Roger W; Madra, Naju J; Levy, Susan S et al. (2011) Co-regulation of movement speed and accuracy by children with heavy prenatal alcohol exposure. Percept Mot Skills 112:172-82
Salomonczyk, Danielle; Panzera, Robert; Pirogovosky, Eva et al. (2010) Impaired postural stability as a marker of premanifest Huntington's disease. Mov Disord 25:2428-33