Accumulation of the amyloid ss-protein (Ass) in brain, either as parenchymal plaques or cerebrovascular deposits, is a key pathological feature of patients with Alzheimer's disease (AD) and several related disorders. The Ass peptides are derived from the amyloid ss-protein precursor (AssPP) by sequential proteolytic cleavages by ss- and 3-secretase enzymes. The factors that either promote or impede Ass assembly into fibrillar structures that deposit in brain remain largely undefined. Recent in vitro work from our laboratory has shown that myelin basic protein (MBP), a prominent component of myelin in brain, is a potent inhibitor of Ass fibrillar assembly and can protect cultured primary neurons from the toxic effects of Ass. Although the spatial deposition of Ass in brain is consistent with this finding (i.e. brain white matter rich in MBP is largely devoid of fibrillar Ass deposits) and there is a relationship between decreased MBP levels and increased Ass levels it remains unknown if MBP does indeed influence Ass assembly and accumulation in vivo. Several well-characterized human AssPP transgenic mouse models have been generated that develop AD-like fibrillar amyloid deposits. To study the consequences of the absence of MBP on fibrillar amyloid assembly and deposition in these established AssPP transgenic models one could breed them onto an MBP gene knockout background. Such a model, known as the shiverer mouse, exists but comes with the significant shortcomings in that they do not form myelin and die within several months after birth. Unfortunately, human AssPP transgenic mouse models require aging well beyond several months to develop significant pathologic amyloid formation. Instead of knocking out expression of the entire MBP protein a more sophisticated approach that we plan to employ will be to mutate a highly specific domain on the MBP protein to disable a specific function. To this end, in the R21 Phase of this application we propose to generate a novel """"""""knock in"""""""" mouse model where we will introduce alanine mutations into a specific KRG motif in the endogenous mouse Golli-MBP gene. Our recent studies have identified this specific KRG motif as an essential element for binding to Ass peptides and inhibiting their fibrillar assembly. The resulting new """"""""knock in"""""""" model will produce MBP that lacks the ability to bind Ass peptides and inhibit their assembly. These novel MBP- KRG/AAA knock in mice will be generated and initially characterized for viability, growth, behavior, and myelination. After successful completion of the R21 Phase of this application we plan to proceed to the R33 Phase where we propose to cross the MBP-KRG/AAA knock in mice with two different human AssPP transgenic mouse models that develop fibrillar amyloid deposition. The crossed mouse lines will be aged and quantitatively evaluated for the acumulation, asembly, and deposition of Ass peptides and the resulting downstream pathological and behavioral consequences. Completion of these studies will provide new insight into potential physiological mechanisms that govern pathogenic amyloid assembly and may lead to new avenues for intervention into this pathologic process.

Public Health Relevance

Aggregation and deposition of a protein fragment, known as amyloid ss-protein (Ass), in the brain is a key pathological feature of Alzheimer's disease and related disorders. Factors that regulate its aggregation play an important role in determining if Ass accumulates during disease. The purpose of this proposal is to generate an innovative and novel mouse model to investigate a newly identified factor that can prevent Ass aggregation and deposition in brain.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
Refolo, Lorenzo
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
State University New York Stony Brook
Internal Medicine/Medicine
Schools of Medicine
Stony Brook
United States
Zip Code
Ou-Yang, Ming-Hsuan; Xu, Feng; Liao, Mei-Chen et al. (2015) N-terminal region of myelin basic protein reduces fibrillar amyloid-? deposition in Tg-5xFAD mice. Neurobiol Aging 36:801-11
Kotarba, Annmarie E; Aucoin, Darryl; Hoos, Michael D et al. (2013) Fine mapping of the amyloid ýý-protein binding site on myelin basic protein. Biochemistry 52:2565-73
Ou-Yang, Ming-Hsuan; Van Nostrand, William E (2013) The absence of myelin basic protein promotes neuroinflammation and reduces amyloid ?-protein accumulation in Tg-5xFAD mice. J Neuroinflammation 10:134