Mitochondrial dysfunction is associated with ageing as well as a number of age-related neurodegenerative diseases including Alzheimer?s Disease (AD). Early onset AD has been linked to mutations in amyloid precursor protein (APP) and presenilins 1 and 2 (PS1 and PS2), which result in abnormal cleavage of APP and release of toxic amyloid beta (A???peptides. Accumulating evidence suggests that APP intracellular domain (AICD) may also contribute to pathogenesis of AD. To gain insights into the normal and pathological roles of AICD, we previously used a biochemical affinity proteomic strategy and found that AICD directly interacts with a novel mitochondrial protein, Nipsnap1 (4-nitrophenyl phosphatase domain and non-neuronal SNAP-25 like protein homolog1). Although Nipsnap1 is evolutionarily conserved, very little is known about its function. Our long-term goal is to investigate the molecular and cellular function of Nipsnap1 and to determine its role in neurodegeneration. Toward this end, we generated a mouse with a targeted disruption of the Nipsnap1 gene. Disruption of Nipsnap1 expression profoundly affects intermediate metabolism and significantly increased apoptosis and neurodegeneration in the brain. Protein structure modeling and virtual ligand screening suggested that Nipsnap1 may bind to NADH and NADPH. Using in vitro biochemical assays, we found for the first time that Nipsnap1 directly binds to both NADH and NADPH. Moreover, we found significantly lower NAD+/NADH ratios in Nipsnap1 deficient brain. The balance between NAD+ and NADH is critical for production of ATP, maintenance of mitochondrial potential and regeneration of reducing agents within cells to counteract reactive oxygen radicals. Based on these preliminary results, we hypothesize that Nipsnap1 plays an important role in neuronal survival by modulating dehydrogenase activities and NAD(P)H levels. In this project, we will use biochemical approaches and primary neuronal cultures derived from WT and Nipsnap1 deficient mice to determine if: 1) Nipsnap1 interacts with and regulates multiple dehydrogenases in the mitochondria; 2) AICD interaction with Nipsnap1 affects dehydrogenase activity and neuronal NAD+/NADH levels. Our work will provide insights into the molecular function of Nipsnap1 and possibly a new mechanism by which AICD produces neurotoxicity.

Public Health Relevance

Mitochondrial dysfunction is associated with a variety of neurodegenerative disorders, including Alzheimer?s, Parkinson?s and Huntington?s diseases. We previously found a novel mitochondrial protein called NIPSNAP1 through its interaction with the Alzheimer amyloid precursor protein (APP). Using a genetically engineered mouse model, we found that NIPSNAP1 plays a neuroprotective role in the brain, binds directly to NADH affects NAD+/NADH levels. In this project, we will investigate the molecular function of NIPSNAP1 in mitochondria and determine whether APP can modulate its function. This study may lead to new insights into the pathogenesis of Alzheimer?s disease and provide new avenues for development of therapeutic strategies for AD and other neurodegenerative diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AG047619-01A1
Application #
9318084
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Wise, Bradley C
Project Start
2017-04-01
Project End
2019-03-31
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Memphis
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
055688857
City
Memphis
State
TN
Country
United States
Zip Code
38152