Despite the importance of Clostridium botulinum as a human and animal pathogen, and its potential role in bioterrorism, the organism remains extremely poorly characterized with regard to cellular processes and their role in pathogenesis. This is almost entirely a consequence of ineffective genetic systems, and in particular integrational tools. This inability to easily generate stable mutants (directed or random) is common to all clostridial species, and severely hinders the ability of the scientific community at large to fully exploit clostridial genome information in hypothesis driven research. The goal of this project is specifically to develop the necessary enabling technology to overcome this impediment.
The aims are: (1) to develop integrational vectors to introduce targeted mutations in genes of C. botulinum; (2) to identify effective transposons for random mutagenesis and (3) to assess antisense RNA strategies for modulation and analysis of C. botulinum gene expression.
These aims will be accomplished through the complementary knowledge and expertise of a USA and UK laboratory. The developed genetic tools will pave the way for in depth analysis of not only the C. botulinum genome, but other clostridial genomes too. Their future deployment will, for example, lead to the elucidation of physiological factors that control growth and toxin production, pathogenesis, and developmental processes unique to clostridia and related organisms including endospore formation, resistance, germination and outgrowth.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AI059125-02
Application #
6889509
Study Section
Special Emphasis Panel (ZRG1-IDM-A (90))
Program Officer
Van de Verg, Lillian L
Project Start
2004-05-01
Project End
2006-04-30
Budget Start
2005-05-01
Budget End
2006-04-30
Support Year
2
Fiscal Year
2005
Total Cost
$245,500
Indirect Cost
Name
University of Wisconsin Madison
Department
Microbiology/Immun/Virology
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Marshall, Kristin M; Bradshaw, Marite; Pellett, Sabine et al. (2007) Plasmid encoded neurotoxin genes in Clostridium botulinum serotype A subtypes. Biochem Biophys Res Commun 361:49-54