Food allergic responses include diverse diseases ranging from acute oral antigen-induced IgE-mediated anaphylaxis to chronic tissue-specific inflammation such as eosinophilic esophagitis (EoE). A common characteristic of these responses is exposure to acidic microenvironments as systemic anaphylaxis may be associated with acidosis and eosinophilic esophageal inflammation is associated with acid exposure from physiological or pathological reflux. We have recently identified a new pathway involved in allergic inflammatory cell function mediated by the proton-sensing G-protein coupled receptor GPR65. Specifically, we identified GPR65 as a nonredundant acid sensor on eosinophils, leading to increased survival of eosinophils in acidic pH. The esophagus is regularly exposed to acid and this may contribute to enhanced eosinophil responses, including survival (and accumulation). Further, our preliminary data suggest expression of GPR65 on mast cells, which are essential for most models of oral antigen-induced anaphylaxis. We now hypothesize that acidic microenvironment and/or GPR65 are involved in allergen-induced responses including experimental EoE and food allergy. Furthermore, we hypothesize that acidity enhances the function of cells involved in these models, including eosinophils and mast cells. We are hopeful that this study will unravel novel molecular mechanisms involved in IgE-mediated inflammation and will help provide a better understanding of the disease. Finally, by identifying a new pathway, this study may present opportunities for new targets in the disease. Food allergic responses include diverse diseases ranging from life-threatening anaphylaxis to chronic eosinophilic esophagitis. A common characteristic of these responses is exposure to acidic microenvironments. This grant will test the role of acidic microenvironment in food allergy. We will also focus on the effect of acidity on mast cells and eosinophils, cells critically important in these diseases.

Public Health Relevance

Food allergic responses include diverse diseases ranging from life-threatening anaphylaxis to chronic eosinophilic esophagitis. A common characteristic of these responses is exposure to acidic microenvironments. This grant will test the role of acidic microenvironment in food allergy. We will also focus on the effect of acidity on mast cells and eosinophils, cells critically important in these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AI088559-02
Application #
8035920
Study Section
Special Emphasis Panel (ZAI1-SV-I (J1))
Program Officer
Davidson, Wendy F
Project Start
2010-03-03
Project End
2013-02-28
Budget Start
2011-03-01
Budget End
2013-02-28
Support Year
2
Fiscal Year
2011
Total Cost
$226,958
Indirect Cost
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Zhu, Xiang; Mose, Eucabeth; Hogan, Simon P et al. (2014) Differential eosinophil and mast cell regulation: mast cell viability and accumulation in inflammatory tissue are independent of proton-sensing receptor GPR65. Am J Physiol Gastrointest Liver Physiol 306:G974-82
Kano, Gen; Almanan, Maha; Bochner, Bruce S et al. (2013) Mechanism of Siglec-8-mediated cell death in IL-5-activated eosinophils: role for reactive oxygen species-enhanced MEK/ERK activation. J Allergy Clin Immunol 132:437-45