Cytoplasmic heat shock protein 90 alpha and beta (Hsp90? and ?) and endoplasmic reticulum (ER) glucose-regulated protein94 (Grp94) are the main known mammalian Hsp90 paralogs. Each is responsible for chaperoning a distinct set of client proteins and has a unique biochemical role, despite 50% sequence identity in N-domains and analogous regulatory ligand binding cavities. While Hsp90? and ? have important roles in maintaining the functional conformation of a large number of aberrant malignancy- and neurodegeneration- driving proteins, such as kinases, transcription factors and anti-apoptotic proteins, Grp94 lacks these biochemical hallmarks. In contrast, Grp94 is involved in the regulation of a restricted number of proteins involved in channeling immune and inflammatory signals. Of especial importance are emerging therapeutic implications of Grp94 in regulating the immune response in many pathological conditions, in which this mainly ER chaperone, translocates to the cell surface and/or is excreted into the circulation. Through regulation of cell surface expression of Toll-like receptors (TLRs), Grp94 is associated with pathological processes like autoimmune disease, chronic inflammatory conditions and sepsis. Recently, a link between Grp94 and the pathogenesis of autoimmune diabetes and the development of vascular complications, frequently associated with the disease, has emerged. Furthermore, Grp94 is implicated in promoting chronic inflammation in rheumatoid arthritis. Taken together, these findings suggest Grp94 as a valid target for therapeutic intervention, and position the Grp94 inhibitors as potential therapeutics in the treatment of immune-related disorders. To date however, no selective Grp94 inhibitor scaffold of therapeutic significance has been reported, and all inhibitors in clinical evaluation for cancers act with similar affinity on all four Hsp90 members. The use of pan-Hsp90 inhibitors for immune-related disorders, of which most require chronic administration, has its obvious limitations, and may be associated with unacceptable benefit to toxicity ratio. To overcome these limitations, this application proposes to identify selective and therapeutically relevant Grp94-small molecule inhibitor scaffolds. While challenging because of the high structural similarity among Hsp90s in the ligand binding pocket, our preliminary data confirm that discovery of Grp94 inhibitors with several log-orders of selectivity over Hsp90s is possible. Our proposal offers a pioneering perspective on the discovery, design, synthesis and evaluation of selective Grp94 inhibitors. It will employ an iterative feed-back strategy in which computational, synthetic and medicinal chemistry efforts feed into and from biochemical and biological information. At the end of the two years we anticipate to have gained important SAR information that will teach on the structural features imperative for a lead Grp94 inhibitor. Our ultimate goal is to identify leads for future clinical translation.

Public Health Relevance

The molecular chaperone Grp94, unlike is closely related paralog Hsp90, is involved in the regulation of a restricted number of proteins involved in channeling immune and inflammatory signals, indicating that the pathogenic Grp94 roles are amenable for selective therapeutic modulation. As such, septic shock, autoimmune diseases, chronic inflammatory conditions, diabetes, coronary thrombosis and stroke can be potentially treated by targeting Grp94 with small molecule inhibitors. Selective small molecules of the Grp94 chaperone with therapeutic applicability are yet to be reported, and our application is first to describe strategies for the discovery and development of such agents.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AI090501-02
Application #
8065965
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Dong, Gang
Project Start
2010-05-01
Project End
2013-04-30
Budget Start
2011-05-01
Budget End
2013-04-30
Support Year
2
Fiscal Year
2011
Total Cost
$205,994
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Joshi, Suhasini; Wang, Tai; Araujo, ThaĆ­s L S et al. (2018) Adapting to stress - chaperome networks in cancer. Nat Rev Cancer 18:562-575
Patel, Mayurbhai R; Kozuch, Stephen D; Cultrara, Christopher N et al. (2016) RNAi Screening of the Glucose-Regulated Chaperones in Cancer with Self-Assembled siRNA Nanostructures. Nano Lett :
Rodina, Anna; Wang, Tai; Yan, Pengrong et al. (2016) The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538:397-401
Chiosis, Gabriela (2016) Editorial (Thematic Issue: Heat Shock Proteins in Disease - From Molecular Mechanisms to Therapeutics). Curr Top Med Chem 16:2727-8
Chiosis, Gabriela (2016) Editorial: Heat Shock Protein in Disease - From Molecular Mechanisms to Therapeutics. Curr Top Med Chem :
Rachidi, Saleh; Sun, Shaoli; Wu, Bill X et al. (2015) Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis. J Hepatol 62:879-88
(2015) Voices of chemical biology. Nat Chem Biol 11:378-9
Patel, Hardik J; Patel, Pallav D; Ochiana, Stefan O et al. (2015) Structure-activity relationship in a purine-scaffold compound series with selectivity for the endoplasmic reticulum Hsp90 paralog Grp94. J Med Chem 58:3922-43
Taldone, Tony; Ochiana, Stefan O; Patel, Pallav D et al. (2014) Selective targeting of the stress chaperome as a therapeutic strategy. Trends Pharmacol Sci 35:592-603
Taldone, Tony; Patel, Hardik J; Bolaender, Alexander et al. (2014) Protein chaperones: a composition of matter review (2008 - 2013). Expert Opin Ther Pat 24:501-18

Showing the most recent 10 out of 18 publications