The long-term goal is to provide for an improved immunoassay as an adjunct for the diagnosis of Lyme disease. The assay preferably would have (a) greater sensitivity for detecting infection during early disease, (b) have as a good if no better specificity than currently available assays, alone or in combination, for all stages of disease, and (c) be sufficiently informative that assay interpreters infer the strain of B. burgdorferi a patient is infected with.
Specific aims for this R21/R33 application are the following: (1) Use a genome-wide proteome array to interrogate IgM responses of patients with LD and experimental animals infected with B. burgdorferi. The approach will be similar to what was successfully used for studies with an array of IgG responses of humans and mice to this pathogen. The hypothesis that sensitivity of IgM assays is heightened by including two or more OspC type will be tested. (R21 phase) (2) Investigate whether profiles of antibody reactivity to sub-unit antigens provide added-value for inference about the strain of B. burgdorferi someone has been infected with. This will be evaluated in experimental animals infected with different strains and with sera from patients for whom the infecting strain was recovered. Hypotheses that (a) OspC type-specific responses can be distinguished and (b) patterns of reactivity to the BBK07 and BBK12 proteins vary with the infecting strain will be tested. (R21 phase) (3) Develop an immunoassay for eventual clinical testing by (a) selecting the most informative set of recombinant antigens for achieving a high predictive value while minimizing cost, and (b) selecting the most suitable platform, provisionally from among ELISA, immunostrips, and Luminex, for implementation in clinical research evaluation of the assay. The choice of antigens will be from those identified in a previous study, as well as from the results of aims 1 and 2. (R33 phase)

Public Health Relevance

The long-term goal of the project is improvement in laboratory testing for immune responses to the Lyme disease agent, Borrelia burgdorferi. This will be achieved by increasing the sensitivity of assays for antibodies during the early stage of the infection and by providing evidence about the strain of the pathogen a patient may be infected with.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AI100236-02
Application #
8471641
Study Section
Special Emphasis Panel (ZAI1-ESB-M (J3))
Program Officer
Breen, Joseph J
Project Start
2012-06-01
Project End
2014-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
2
Fiscal Year
2013
Total Cost
$192,448
Indirect Cost
$67,448
Name
University of California Irvine
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Krause, Peter J; Narasimhan, Sukanya; Wormser, Gary P et al. (2014) Borrelia miyamotoi sensu lato seroreactivity and seroprevalence in the northeastern United States. Emerg Infect Dis 20:1183-90
Baum, Elisabeth; Grosenbaugh, Deborah A; Barbour, Alan G (2014) Diversity of antibody responses to Borrelia burgdorferi in experimentally infected beagle dogs. Clin Vaccine Immunol 21:838-46
Barbour, Alan G (2014) Phylogeny of a relapsing fever Borrelia species transmitted by the hard tick Ixodes scapularis. Infect Genet Evol 27:551-8
Baum, Elisabeth; Randall, Arlo Z; Zeller, Michael et al. (2013) Inferring epitopes of a polymorphic antigen amidst broadly cross-reactive antibodies using protein microarrays: a study of OspC proteins of Borrelia burgdorferi. PLoS One 8:e67445