The T cell receptor (TCR)-CD3 complex is composed of a diverse TCR heterodimer non-covalently associated with the invariant CD3 dimers CD3, CD3 , and CD3 . The TCR mediates peptide-MHC (pMHC) recognition, while the associated CD3 molecules transduce activation signals to the T cell. Whereas much is known about downstream T cell signaling pathways, the mechanisms whereby TCR engagement by pMHC initiates signaling remain a mystery. A key to solving this problem is establishing the spatial organization of the TCR-CD3 complex. Although the extracellular regions of TCR and CD3 are known to interact, all previous attempts to study the TCR-CD3 receptor by X-ray crystallography have been frustrated by the very low affinity of TCR-CD3 interactions in solution, which precludes the formation of stable assemblies for structural analysis. To overcome this obstacle, this project employs a novel strategy combining NMR spectroscopy to map docking sites in solution with in vitro directed evolution by yeast surface display (YSD) to stabilize TCR-CD3 complexes for crystallization. Our objectives are: 1. Determination of the NMR solution structure for the wild-type TCR-CD3 complex. We will employ chemical shift perturbation and paramagnetic relaxation enhancement (PRE) to determine binding epitopes between CD3 and TCR. These data will be used to determine a structure for the TCR-CD3 complex in solution and to guide the design of YSD experiments. Preliminary NMR spectra support the feasibility of defining the wild-type TCR-CD3 interface in solution. 2. Affinity maturation of binding interactions between TCR and CD3. Large mutant libraries of TCR (107-108 independent clones) will be displayed on yeast and sorted by flow cytometry with CD3 or CD3 tetramers to isolate high-affinity TCR variants. Conversely, mutant libraries of CD3 and CD3 will be affinity-selected with TCR tetramers. As a demonstration of the power of this approach, we recently employed YSD to stabilize the extremely weak interaction between human CD4 and MHC class II (KD >400 M), which enabled us to determine the first crystal structure of a TCR- pMHC-CD4 ternary complex. 3. Assembly and structural analysis of affinity-matured TCR-CD3 complexes. We will pursue crystallization of high-affinity TCR-CD3 complexes. Both binary and ternary complexes will be targeted: TCR-CD3, TCR-CD3 and TCR-CD3 -CD3 . If crystals cannot be obtained, we will use NMR to determine the structure of the affinity-matured TCR-CD3 complex. Structural information on these complexes, determined either by X-ray or NMR, will define the overall spatial organization of the multisubunit TCR-CD3 receptor.

Public Health Relevance

Although recognition of MHC-bound peptides by the T cell receptor (TCR) is essential for initiating adaptive immune responses to invading pathogens, the mechanism by which TCR ligation leads to T cell triggering has remained a fundamental mystery for over 20 years. A critical element to solving this mystery is elucidating the spatial organization of the TCR-CD3 receptor complex, which transmits activation signals to the T cell. We propose a new approach to this long-standing problem involving NMR spectroscopy combined with directed evolution and X-ray crystallography to assemble the TCR-CD3 complex for structural analysis.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Cellular and Molecular Immunology - B Study Section (CMIB)
Program Officer
Leitner, Wolfgang W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland College Park
Other Domestic Higher Education
College Park
United States
Zip Code